Answer:
Explained below.
Explanation:
(a)
It is provided that the price function for 1000 TVs is,
p (1000) = 400.
Also provided that if rebate of $10 is given then sale increases by 100 per week.
Let x be the number of unit sold per week then (x − 1000) is the increase in the number of units sold.
Then the price function is:
![p(x)=400-(1)/(10)(x-1000)](https://img.qammunity.org/2021/formulas/mathematics/college/x9ddyscfv2c0v08mqmpnkburg6oksbovmw.png)
![=400-(x)/(10)+100\\\\=500-(x)/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/923qzad44438ur0l859lgyss91w4qdri1o.png)
Thus, the demand function is,
.
(b)
The revenue function is:
![R(x)=x\cdot p(x)](https://img.qammunity.org/2021/formulas/mathematics/college/4ut0lmo6mh83wq45vkbtcl63aiqp97hzjp.png)
![=x[500-(x)/(10)]\\\\=500x-(x^(2))/(10)](https://img.qammunity.org/2021/formulas/mathematics/college/dbr8jwf6y6qlsovuc5e4nt0emduodi5o5v.png)
Maximize the revenue as follows:
![(d)/(dx)(R(x))=0](https://img.qammunity.org/2021/formulas/mathematics/college/hhgh7j783c98lilhrq4wlq57pecuenm6xm.png)
![(d)/(dx)[500x-(x^(2))/(10)]=0](https://img.qammunity.org/2021/formulas/mathematics/college/8gja2kftls8va6mw9rc9t8570nqr5wtp8n.png)
![500-(x)/(5)=0](https://img.qammunity.org/2021/formulas/mathematics/college/gpxkd9y0pa0vrwd3xbgje8yfa7nhho55aq.png)
![(x)/(5)=500](https://img.qammunity.org/2021/formulas/mathematics/college/fjk0c7yc61kw9u4yya318e2buntg59nxdv.png)
![x=2500](https://img.qammunity.org/2021/formulas/mathematics/college/ne8b7sgdvv6liq6ufkfaifsq53yz1fe1l8.png)
Observe that R'(x) > 0 for 0 ≤ x < 2500 and R'(x) < 0 for x > 2500. Hence, first derivative test will lead to the conclusion that maximum occurs at x = 2500.
Compute the value p (2500) as follows:
![p(2500)=500-(2500)/(10)=500-250=250](https://img.qammunity.org/2021/formulas/mathematics/college/6m47e6fy9vl9emjc6jbsljy0k79iq884h7.png)
Then the rebate to maximize the revenue should be: $400 - $250 = $150.
(c)
The weekly cost function is,
![C(x) = 73000 + 110x](https://img.qammunity.org/2021/formulas/mathematics/college/sqgc4t3f249hmz72yk1hghn2d9r1fnj8vi.png)
Compute the profit function as follows:
![=500x-(x^(2))/(10)- 73000 - 110x\\\\=390x-(x^(2))/(10)- 73000](https://img.qammunity.org/2021/formulas/mathematics/college/av5rk6zhbv89uuhmdmjk4am4zm17rqa0v8.png)
Compute the marginal profit as follows:
![\text{Marginal profit}=P'(x)\\=(d)/(dx)P(x)\\=(d)/(dx)[390x-(x^(2))/(10)- 73000]\\=390-(x)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/peof12nl9u7lm5x5rvkuaamdy024sosnrp.png)
Compute the value of x for P'(x) = 0 as follows:
![P'(x)=0\\\\390-(x)/(5)=0\\\\x=390* 5\\\\x=1950](https://img.qammunity.org/2021/formulas/mathematics/college/nb00l4wmvjxamd6r0mnvjul5ih6d3hlstx.png)
Observe that P'(x) > 0 for 0 ≤ x < 1950 and P'(x) < 0 for x > 1950. Hence, first
derivative test will lead to the conclusion that maximum occurs at x = 1950.
Compute the value p (1950) as follows:
![p(1950)=500-(1950)/(10)=500-195=305](https://img.qammunity.org/2021/formulas/mathematics/college/9c95kxl5q3zdingb6b38j8hobc8x11u4sl.png)
Then the rebate to maximize the profit should be: $400 - $305 = $95.