Answer: see proof below
Explanation:
Use the following Half-Angle Identities: tan (A/2) = (sinA)/(1 + cosA)
cot (A/2) = (sinA)/(1 - cosA)
Use the Pythagorean Identity: cos²A + sin²B = 1
Use Unit Circle to evaluate: cos 45° = sin 45° =
![(\sqrt2)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ygqs7b6m0c65l37z6qrsgnpwo5821ro2rw.png)
Proof LHS → RHS
Given:
![cot\ (22(1)/(2))^o-tan\ (22(1)/(2))^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/64eao847tj5cle19cesixjd0m3tft6k9z6.png)
Rewrite Fraction:
![cot\ ((45)/(2))^o-tan\ ((45)/(2))^o](https://img.qammunity.org/2021/formulas/mathematics/high-school/7oiooatxb1crgcmsxue9mzle27m23pyszl.png)
Half-Angle Identity:
![(sin(45)^o)/(1-cos(45)^o)-(sin(45)^o)/(1+cos(45)^o)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mu5il3jtzj2rf41j1gaabxjc9l8yi298de.png)
Substitute:
![((\sqrt2)/(2))/(1-(\sqrt2)/(2))-((\sqrt2)/(2))/(1+(\sqrt2)/(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/fhmip9wlkh0qbk5nxx58qvt78xp4fuj1an.png)
Simplify:
![((\sqrt2)/(2))/((2-\sqrt2)/(2))-((\sqrt2)/(2))/((2+\sqrt2)/(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ke98eb7w0932e9xlhmlbamju9e3t9a8bap.png)
![=(\sqrt2)/(2-\sqrt2)-(\sqrt2)/(2+\sqrt2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/2ang8n9di2xjco35jrl7yciknk2uejp2nn.png)
![=(\sqrt2)/(2-\sqrt2)\bigg((2+\sqrt2)/(2+\sqrt2)\bigg)-(\sqrt2)/(2+\sqrt2)\bigg((2-\sqrt2)/(2-\sqrt2)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/paask7wu9u4glhjvhlgcgfpmu6wcwoxzmi.png)
![=(2\sqrt2+2)/(4-2)-(2\sqrt2-2)/(4-2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/bmcsjq7gt4232xl3b4r2skzqhf4ogl60gt.png)
![=(4)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9lq3zjxge33qi746nmg381ofpq6d374dn8.png)
= 2
LHS = RHS: 2 = 2
![\checkmark](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2v4z11vsn0bdvhj920fbk7f97ux40axw6u.png)