177k views
3 votes
Please help me!!!!!!!!!!!!!​

Please help me!!!!!!!!!!!!!​-example-1
User Jaeo
by
8.7k points

1 Answer

5 votes

Answer: see proof below

Explanation:

Use the following Half-Angle Identities: tan (A/2) = (sinA)/(1 + cosA)

cot (A/2) = (sinA)/(1 - cosA)

Use the Pythagorean Identity: cos²A + sin²B = 1

Use Unit Circle to evaluate: cos 45° = sin 45° =
(\sqrt2)/(2)

Proof LHS → RHS

Given:
cot\ (22(1)/(2))^o-tan\ (22(1)/(2))^o

Rewrite Fraction:
cot\ ((45)/(2))^o-tan\ ((45)/(2))^o

Half-Angle Identity:
(sin(45)^o)/(1-cos(45)^o)-(sin(45)^o)/(1+cos(45)^o)

Substitute:
((\sqrt2)/(2))/(1-(\sqrt2)/(2))-((\sqrt2)/(2))/(1+(\sqrt2)/(2))

Simplify:
((\sqrt2)/(2))/((2-\sqrt2)/(2))-((\sqrt2)/(2))/((2+\sqrt2)/(2))


=(\sqrt2)/(2-\sqrt2)-(\sqrt2)/(2+\sqrt2)


=(\sqrt2)/(2-\sqrt2)\bigg((2+\sqrt2)/(2+\sqrt2)\bigg)-(\sqrt2)/(2+\sqrt2)\bigg((2-\sqrt2)/(2-\sqrt2)\bigg)


=(2\sqrt2+2)/(4-2)-(2\sqrt2-2)/(4-2)


=(4)/(2)

= 2

LHS = RHS: 2 = 2
\checkmark

Please help me!!!!!!!!!!!!!​-example-1
Please help me!!!!!!!!!!!!!​-example-2
User Svrist
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories