142k views
2 votes
Please help me!!!!!​

Please help me!!!!!​-example-1

1 Answer

2 votes

Answer: see proof below

Explanation:

Use the Sum & Difference Identity: tan (A - B) = (tanA - tanB)/(1 + tanA tanB)

Use the Half-Angle Identity: tan (A/2) = (1 - cosA)/(sinA)

Use the Unit Circle to evaluate tan (π/4) = 1

Use Pythagorean Identity: cos²A + sin²A = 1

Proof LHS → RHS


\text{Given:}\qquad \qquad \qquad(2\tan\bigg((\pi)/(4)-(A)/(2)\bigg))/(1+\tan^2\bigg((\pi)/(4)-(A)/(2)\bigg))


\text{Difference Identity:}\qquad (2 \bigg( (\tan(\pi)/(4)-\tan(A)/(2))/(1+\tan(\pi)/(4)\cdot \tan(A)/(2))\bigg))/(1+ \bigg( (\tan(\pi)/(4)-\tan(A)/(2))/(1+\tan(\pi)/(4)\cdot \tan(A)/(2))\bigg)^2)


\text{Substitute:}\qquad \qquad (2 \bigg( (1-\tan(A)/(2))/(1+\tan(A)/(2))\bigg))/(1+ \bigg( (1-\tan(A)/(2))/(1+\tan(A)/(2))\bigg)^2)


\text{Simplify:}\qquad \qquad \qquad (1-\tan^2(A)/(2))/(1+\tan^2(A)/(2))


\text{Half-Angle Identity:}\qquad \quad (1-((1-\cos A)/(\sin A))^2)/(1+((1-\cos A)/(\sin A))^2)


\text{Simplify:}\qquad \qquad (\sin^2 A-1+2\cos A-\cos^2 A)/(\sin^2 A+1-2\cos A+\cos^2 A)


\text{Pythagorean Identity:}\qquad \qquad (1-\cos^2 A-1+2\cos A)/(2-2\cos A)


\text{Simplify:}\qquad \qquad \qquad (2\cos A-2\cos^2 A)/(2(1-\cos A))\\\\.\qquad \qquad \qquad \qquad =(2\cos A(1-\cos A))/(2(1-\cos A))

= cos A

LHS = RHS: cos A = cos A
\checkmark

Please help me!!!!!​-example-1
Please help me!!!!!​-example-2
User Chris Truman
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories