142k views
2 votes
Please help me!!!!!​

Please help me!!!!!​-example-1

1 Answer

2 votes

Answer: see proof below

Explanation:

Use the Sum & Difference Identity: tan (A - B) = (tanA - tanB)/(1 + tanA tanB)

Use the Half-Angle Identity: tan (A/2) = (1 - cosA)/(sinA)

Use the Unit Circle to evaluate tan (π/4) = 1

Use Pythagorean Identity: cos²A + sin²A = 1

Proof LHS → RHS


\text{Given:}\qquad \qquad \qquad(2\tan\bigg((\pi)/(4)-(A)/(2)\bigg))/(1+\tan^2\bigg((\pi)/(4)-(A)/(2)\bigg))


\text{Difference Identity:}\qquad (2 \bigg( (\tan(\pi)/(4)-\tan(A)/(2))/(1+\tan(\pi)/(4)\cdot \tan(A)/(2))\bigg))/(1+ \bigg( (\tan(\pi)/(4)-\tan(A)/(2))/(1+\tan(\pi)/(4)\cdot \tan(A)/(2))\bigg)^2)


\text{Substitute:}\qquad \qquad (2 \bigg( (1-\tan(A)/(2))/(1+\tan(A)/(2))\bigg))/(1+ \bigg( (1-\tan(A)/(2))/(1+\tan(A)/(2))\bigg)^2)


\text{Simplify:}\qquad \qquad \qquad (1-\tan^2(A)/(2))/(1+\tan^2(A)/(2))


\text{Half-Angle Identity:}\qquad \quad (1-((1-\cos A)/(\sin A))^2)/(1+((1-\cos A)/(\sin A))^2)


\text{Simplify:}\qquad \qquad (\sin^2 A-1+2\cos A-\cos^2 A)/(\sin^2 A+1-2\cos A+\cos^2 A)


\text{Pythagorean Identity:}\qquad \qquad (1-\cos^2 A-1+2\cos A)/(2-2\cos A)


\text{Simplify:}\qquad \qquad \qquad (2\cos A-2\cos^2 A)/(2(1-\cos A))\\\\.\qquad \qquad \qquad \qquad =(2\cos A(1-\cos A))/(2(1-\cos A))

= cos A

LHS = RHS: cos A = cos A
\checkmark

Please help me!!!!!​-example-1
Please help me!!!!!​-example-2
User Chris Truman
by
5.3k points