Answer: see proof below
Explanation:
Use the Sum & Difference Identity: tan (A - B) = (tanA - tanB)/(1 + tanA tanB)
Use the Half-Angle Identity: tan (A/2) = (1 - cosA)/(sinA)
Use the Unit Circle to evaluate tan (π/4) = 1
Use Pythagorean Identity: cos²A + sin²A = 1
Proof LHS → RHS
![\text{Given:}\qquad \qquad \qquad(2\tan\bigg((\pi)/(4)-(A)/(2)\bigg))/(1+\tan^2\bigg((\pi)/(4)-(A)/(2)\bigg))](https://img.qammunity.org/2021/formulas/mathematics/high-school/iifsp7owznnldhdaricldenwti5zygyeum.png)
![\text{Difference Identity:}\qquad (2 \bigg( (\tan(\pi)/(4)-\tan(A)/(2))/(1+\tan(\pi)/(4)\cdot \tan(A)/(2))\bigg))/(1+ \bigg( (\tan(\pi)/(4)-\tan(A)/(2))/(1+\tan(\pi)/(4)\cdot \tan(A)/(2))\bigg)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9pgu8o2mvmzdrz2cupxomprc61tygwjyqc.png)
![\text{Substitute:}\qquad \qquad (2 \bigg( (1-\tan(A)/(2))/(1+\tan(A)/(2))\bigg))/(1+ \bigg( (1-\tan(A)/(2))/(1+\tan(A)/(2))\bigg)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zn1p2k9zlu8pg8sw9prqqjx16b9zqzl89u.png)
![\text{Simplify:}\qquad \qquad \qquad (1-\tan^2(A)/(2))/(1+\tan^2(A)/(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/yglg271x7i31yzwkx819nka6ibuj9z2tfa.png)
![\text{Half-Angle Identity:}\qquad \quad (1-((1-\cos A)/(\sin A))^2)/(1+((1-\cos A)/(\sin A))^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/34rdm7114zs3lfd7kek24k9whplkc23mp7.png)
![\text{Simplify:}\qquad \qquad (\sin^2 A-1+2\cos A-\cos^2 A)/(\sin^2 A+1-2\cos A+\cos^2 A)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zh9tx84mdd1krt9v5dw0e0kxc433zpc5i5.png)
![\text{Pythagorean Identity:}\qquad \qquad (1-\cos^2 A-1+2\cos A)/(2-2\cos A)](https://img.qammunity.org/2021/formulas/mathematics/high-school/9l3mvtfdtb44kauamksda2sw7intpa8kks.png)
![\text{Simplify:}\qquad \qquad \qquad (2\cos A-2\cos^2 A)/(2(1-\cos A))\\\\.\qquad \qquad \qquad \qquad =(2\cos A(1-\cos A))/(2(1-\cos A))](https://img.qammunity.org/2021/formulas/mathematics/high-school/e8graqq2t1t5i7na5n56vgm4x88q2ukbwa.png)
= cos A
LHS = RHS: cos A = cos A
![\checkmark](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2v4z11vsn0bdvhj920fbk7f97ux40axw6u.png)