66.0k views
5 votes
A family has four children. What is the probability that two children are girls and two are boys? Assume the the probability of having a boy (or a girl) is 50%.

1 Answer

5 votes

Answer:The first issue one most notice is the words “at least” We are trying to find the probability of at least 2 girls.

The five possible outcomes for girls are 0,1,2,3,4. The odds of 1 girl out of 4 is .25 and the odds of 1 boy out of 4 is .25 (same as the odds of 3 out of 4 girls). Therefore the odds of 1 OR 3 girls must be .5 because 1 girl and 3 girls each has a .25 probability. If the probability of (1 OR 3 girls) equals .5, then the probability of 2 girls must be a different number.

The probability of 2 or more girls, is the sum of the probability of 4 girls (.06125)(—-.5 to the 4th power—— ), plus the probability of 3 girls (.25)——(the same as the probability of 1 boy)—- plus the probability of 2 girls. Since we know the probability of zero boys is .0625 (again, .5 to the 4th power) and the probability of 1 boy is .25 (the same as the probability of 3 girls )———then the probability of 2 girls is ((1 minus (the sum of the probability of 0 OR 1 boys) plus the (sum of the probability of 3 or 4 girls)), or 1-((.0625+.25)+(.0625+.25)), or .375. We had to derive the probability of two from the other known probabilities. Therefore .375+.25+.0625=.6875 is the probability of both AT LEAST 2 girls and also NO MORE than 2 boys. Notice this adds up to 1.375 because the probability of the central number 2 (i.e., .375) appears on both sides.

User Shmit
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories