Answer:
The mass of ball C is greater than the mass of ball A but less than the mass of ball B.
Step-by-step explanation:
From Newton's second law, net force = mass × acceleration.
Using the data for ball B, the acceleration of gravity near the surface of the moon is:
∑F = ma
9.6 N = (6 kg) a
a = 1.6 m/s²
Therefore, the mass of ball C is:
∑F = ma
6.6 N = m (1.6 m/s²)
m = 4.1 kg