Answer:
40°, 95°, 105°, and 160°
Explanation:
Let the smallest angle be x.
Measures of the 3 angles can be expressed as:
![x + 55](https://img.qammunity.org/2021/formulas/mathematics/high-school/ijmucetr6j4g2pezc3piyxfkeale4d6mvf.png)
![x + 65](https://img.qammunity.org/2021/formulas/mathematics/high-school/w8xh4lf4zjvgqdkpehsx2137ypwwlzcbb7.png)
![x + 120](https://img.qammunity.org/2021/formulas/mathematics/high-school/zi1xmnko55j9t2kn634s0gyl8yjlewebzo.png)
The sum of all angles in a quadrilateral = 360°.
Therefore,
![(x + 55) + (x + 65) + (x + 120) = 360](https://img.qammunity.org/2021/formulas/mathematics/high-school/at202bombhm9b6uwaj7g6y5m6r8heznf22.png)
Solve for x
![x + 55 + x + 65 + x + 120 = 360](https://img.qammunity.org/2021/formulas/mathematics/high-school/82p0epe8a6e479kk8j22qqfvnt4g0fmwx2.png)
![3x + 240 = 360](https://img.qammunity.org/2021/formulas/mathematics/high-school/wn4rzmt17fx7atz1cf5u8gb8txkosh4d64.png)
![3x + 240 - 240 = 360 - 240](https://img.qammunity.org/2021/formulas/mathematics/high-school/i334uoi2933w9br89d69hhjfpekeu9vkgl.png)
![3x = 120](https://img.qammunity.org/2021/formulas/mathematics/high-school/f5tevprjv11r4r2drz6xrwb4exloofj4rd.png)
![(3x)/(3) = (120)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/r4c1mg21it9vgrcp1gj9hkx3uxaee3jmj2.png)
![x = 40](https://img.qammunity.org/2021/formulas/mathematics/middle-school/3qh6566beszjr083gmcqh2s4u3bchugmpj.png)
The smallest angle = 40°
Plug in the value of x in the earlier stated expressions to find the measure of the other angles:
![x + 55 = 40 + 55 = 95](https://img.qammunity.org/2021/formulas/mathematics/high-school/zj7fibv3f5ukmj7725p18jyqqhhw8sku1s.png)
![x + 65 = 40 + 65 = 105](https://img.qammunity.org/2021/formulas/mathematics/high-school/drfokokojb0e4xu41we0qj9rr97vi5apev.png)
![x + 120 = 40 + 120 = 160](https://img.qammunity.org/2021/formulas/mathematics/high-school/wdc1gurbwtqs3j6jeksdl0p37sin7h7t8w.png)