Answer:
7.14 s
93.2 m/s, 24.9° below the horizontal
Step-by-step explanation:
Given in the y direction:
Δy = -30 m
v₀ = 90 m/s sin 20° ≈ 30.8 m/s
a = -9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
-30 m = (30.8 m/s) t + ½ (-9.8 m/s²) t²
4.9t² − 30.8t − 30 = 0
t = [ 30.8 ± √((-30.8)² − 4(4.9)(-30)) ] / 2(4.9)
t = 7.14 s
Find: vᵧ
v² = v₀² + 2aΔy
vᵧ² = (30.8 m/s)² + 2 (-9.8 m/s²) (-30 m)
vᵧ = -39.2 m/s
The magnitude of the velocity is:
v² = vₓ² + vᵧ²
v² = (90 m/s cos 20°)² + (-39.2 m/s)²
v = 93.2 m/s
The direction of the velocity is:
tan θ = vᵧ / vₓ
tan θ = (-39.2 m/s) / (90 m/s cos 20°)
θ = -24.9°