Answer:
![\boxed{ \huge{ \boxed{ \sf{ \blue{9 </strong><strong> </strong><strong>,</strong><strong> </strong><strong>\: 40 \:</strong><strong>,</strong><strong> 46 \: }}}}}]()
Option A is the correct option.
Explanation:
1. Let h , p and b are the hypotenuse , perpendicular and base of a right - angled triangle respectively.
From Pythagoras theorem,

Here, we know that the hypotenuse is always greater than perpendicular and base,
h = 46 , p = 40 , b = 9
⇒

⇒

⇒

Thus , the relation
is not satisfied by h = 46 , p = 40 , b = 9
So, The set of numbers 9 , 40 , 46 is not Pythagorean triple.
------------------------------------------------------
2. 16 , 30 , 34
h = 34 , p = 30 , b = 16

⇒

⇒

⇒

The relation
is satisfied by the particular values of h , p and b i.e h = 34 , p = 30 , b = 16
So, the set of numbers 16 , 30 , 34 is a Pythagorean triple.
------------------------------------------------------
3. 10, 24 , 26
h = 26 , p = 24 , b = 10

⇒

⇒

⇒

The relation
is satisfied by the particular values of h , p and h i.e h = 26 , p = 24 , b = 10
So, the set of numbers 10, 24 , 26 is the Pythagorean triple.
-----------------------------------------------------
4. 50 , 120 , 130
h = 130 , p = 120 , b = 50

⇒

⇒

⇒

The relation
is satisfied by the particular values of h , p and b i.e h = 130 , p = 120 , b = 50
So, the set of numbers 50, 120 , 130 is the Pythagorean triple.
-----------------------------------------------------
In this way, to satisfy the Pythagoras Theorem , the hypotenuse ( h ) , perpendicular ( p ) and the base ( b ) of a right - angles triangle should have the particular values in order. These values of h , p and b are called Pythagorean triple.
Hope I helped!
Best regards!!