Answer:
![x = 1 - log_(2)(5)](https://img.qammunity.org/2021/formulas/mathematics/college/cffmmzmrmiohpf5ze60oal2xqlon9rqu5j.png)
Explanation:
![{2}^(x + 2) = 9 ( {2}^(x) ) - 2](https://img.qammunity.org/2021/formulas/mathematics/college/gjsw8ws8d7hsxzzx6xeh2za4ub540a80qh.png)
Using the rules of indices
That's
![{x}^(a + b) = {x}^(a) * {x}^(b)](https://img.qammunity.org/2021/formulas/mathematics/college/2wcshlqdsnxpqthx0e9h77tt9f384zzaul.png)
So we have
![{2}^(x + 2) = {2}^(x) * {2}^(2) = 4( {2}^(x) )](https://img.qammunity.org/2021/formulas/mathematics/college/kyuaai22c3dwf384dzew9wrja5546fy8bg.png)
So we have
![4( {2}^(x)) = 9( {2}^(x) ) - 2](https://img.qammunity.org/2021/formulas/mathematics/college/a967oyrva86e5r4hak0iv8gmaob4tjwpir.png)
Let
![{2}^(x) = y](https://img.qammunity.org/2021/formulas/mathematics/college/375k7uph4se9vddystseg7fqo9axjngflj.png)
We have
4y = 9y - 2
4y - 9y = - 2
- 5y = - 2
Divide both sides by - 5
![y = (2)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/u1wqieqqxx6li2b7r4n852lfscamc7ohdl.png)
But
![{2}^(x) = (2)/(5)](https://img.qammunity.org/2021/formulas/mathematics/college/q7gfse7t8gs8x8zbp6q9iy0a8hnb4f6out.png)
Take logarithm to base 2 to both sides
That's
![log_(2)( {2}^(x) ) = log_(2)( (2)/(5) )](https://img.qammunity.org/2021/formulas/mathematics/college/1s2q2i8sl5hnp0rbdq4w7v5h5e72poq9hn.png)
![log_(2)(2) ^(x) = x log_(2)(2)](https://img.qammunity.org/2021/formulas/mathematics/college/fcz30tirdi0501wu4xfrtcqdw4k5cyty3k.png)
![log_(2)(2) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/y0a9fjmxu84i1oghk9y0shwmal1ftg6die.png)
So we have
![x = log_(2)( (2)/(5) )](https://img.qammunity.org/2021/formulas/mathematics/college/78j2zbuwjz367nj54vuagxerf51r4jlbpd.png)
Using the rules of logarithms
That's
![log( (x)/(y) ) = log(x) - log(y)](https://img.qammunity.org/2021/formulas/mathematics/college/9ar0in9n02gbuun0oqidhdpfpadhphgram.png)
Rewrite the expression
That's
![x = log_(2)(2) - log_(2)(5)](https://img.qammunity.org/2021/formulas/mathematics/college/yk9z9kjxozkdzye2kn79bn1ambwwzwjo98.png)
But
![log_(2)(2) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/y0a9fjmxu84i1oghk9y0shwmal1ftg6die.png)
So we have the final answer as
![x = 1 - log_(2)(5)](https://img.qammunity.org/2021/formulas/mathematics/college/cffmmzmrmiohpf5ze60oal2xqlon9rqu5j.png)
Hope this helps you