6.2k views
5 votes
What do you know to be true about the values of a and b?

60"
75"
O A. a b
O B. a = b
O c. a> b
O D. Can't be determined

What do you know to be true about the values of a and b? 60" 75" O A. a-example-1
User JohnUS
by
3.5k points

2 Answers

4 votes

Answer: B. a = b .

First of all, let's think that a is equal to b.

Then, let's link up these two triangles.

Now, we have a parallelogram.

x+y = a+60

and 75 = b . So, a = b. Then, a is also = 75.

Now apply the basic triangle rule.

75+75+x=180 .. x = 30 degree.

and for the other triangle....

y+75+60=180 .. y= 45 degree...

Now, let's consider that we want to write a as b.

So, x+b+75=180 ...x+b=105

and..

y+b+60=180...y+b = 120..

Then, let's exit the b from these two equations.

-1/ x+b=105

y+b=120

Finally, we found this: y-x =15

and we have already found y and x values.

y was 45 and x was 30 degree.

So when we put these two numbers into that equation y-x=15

we found the value of 15.

So, our answer is a=b.

User Heferav
by
4.5k points
3 votes

Answer:


\huge \boxed{\mathrm{B.} \ a=b}

Explanation:

The two triangles form a parallelogram.

A parallelogram has opposite angles equal.

75 = b

Adjacent angles in a parallelogram are supplementary to one another.

They add up to 180 degrees.

a + 60 + 75 = 180

a + 135 = 180

Subtract 135 from both sides.

a = 75

Therefore, a = b.

What do you know to be true about the values of a and b? 60" 75" O A. a-example-1
User Novi
by
3.8k points