79.8k views
1 vote
If tan tetha =8/15,find the value of sin tetha+cos tetha all divided by cos tetha (1-cos tetha)​

User Feralvam
by
4.3k points

1 Answer

2 votes

Answer: 195.5 or 12 7/32

Explanation:

There is no letter tetha in the table so I use α instead. However it is not sence to final result.

The expression is:

(sinα+cosα)/(cosα*(1-cosα))

Lets divide the nominator and denominator by cosα

(sinα/cosα+cosα/cosα)/(cosα*(1-cosα)/cosα)= (tanα+1)/(1-cosα)=

=(8/15+1)/(1-cosα)= 23/(15*(1-cosα)) (1)

As known cos²α=1-sin²α (divide by cos²α both sides of equation)

cos²a/cos²α=1/cos²α-sin²α/cos²α

1=1/cos²α-tg²α

1/cos²α=1+tg²α

cos²α=1/(1+tg²α)

cosα=sqrt(1/(1+tg²α))= +-sqrt(1/(1+64/225))=+-sqrt(225/(225+64))=

=+-sqrt(225/289)=+-15/17 (2)

Substitute in (1) cosα by (2):

1st use cosα=15/17

1) 23/(15*(1-cosα)) =23/(15*(1-15/17))= 23*17/2=195.5

2-nd use cosα=-15/17

2)23/(15*(1-cosα)) =23/(15*(1+15/17))= 23*17/32=12 7/32

User Pppery
by
4.5k points