Answer:
288π cm³, 904.32 cm³, and 904.778683 cm³
Explanation:
The volume of a sphere can be found using the following formula.
![V=(4)/(3) \pi r^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/x8lj4twf69ve05l3mg8jsee609yv7lv2nq.png)
We are given the diameter, so we must find the radius.
The radius is half of the diameter.
r= d/2
The diameter is 12 cm.
r= 12 cm/2
r= 6 cm
The radius is 6 centimeters. Let's return to the formula and substitute 6 cm in for r.
![V=(4)/(3) \pi (6cm)^3](https://img.qammunity.org/2021/formulas/mathematics/college/fay0h3qb4ug0bcvjsxlp8yoqa4gqthkaz9.png)
Evaluate the exponent.
![(6 cm)^3= 6 cm * 6 cm * 6cm = 36 cm^2 * 6cm= 216 cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/tom7pw1r7hvuhr8v4kc4iub6dzaua43gqs.png)
![V=(4)/(3) \pi * 216 cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/b602i8zwjcrlczo1kk3j90m7pefr8pm093.png)
Multiply 4/3 and 216 cm^3
![V= ((4)/(3) * 216 cm^3)\pi](https://img.qammunity.org/2021/formulas/mathematics/college/dcal20ittjwnn0hjhfm8ge3w3hsilhiovy.png)
In terms of pi:
![V= 288\pi cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/aj6l197zb4fbbqslb4rzb7mfw0ugt8ihr5.png)
Using 3.14 as pi:
![V= 288 \pi cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/s1aqpcuckuqgxlgc3hh5zod5tzeixv7n4x.png)
![V= (288 * 3.14) cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/miqwh0r7xmrfepkmlpdav6zjx3lobsrwbt.png)
![V= 904.32 cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/wzzjudmpxkra1aozf0s810ntzr7k7qlzcr.png)
Using 3.14159265 as pi:
![V= 288 \pi cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/s1aqpcuckuqgxlgc3hh5zod5tzeixv7n4x.png)
![V= (288 * 3.14159265) cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/q0zarrr4d4y6w4ay1h4yxwln149n57twyk.png)
![V=904.778683 cm^3](https://img.qammunity.org/2021/formulas/mathematics/college/nna1z533ajjphhztv8r2ile8a9k3r5t3vk.png)
The volume of the sphere is 288π cm³, 904.32 cm³, and 904.778683 cm³