Answer: 2.308 .
Explanation:
Let X denotes the number of earthquakes in SanFernando valley region of Los Angeles in 1994.
Given:
![\mu=17.6](https://img.qammunity.org/2021/formulas/mathematics/college/73h820uykxf49aptk776u89x6y8352c9c8.png)
Probability is 0.87 that there will be at least 15 earthquakes .
i.e.
![P(X\geq15)=0.87](https://img.qammunity.org/2021/formulas/mathematics/college/6worma7kgrltovdh4ukjgaewgk30mo0wfc.png)
![\Rightarrow\ P((X-\mu)/(\sigma)\geq(15-17.6)/(\sigma))=0.87\\\\ \Rightarrow\ P(Z\geq(-2.6)/(\sigma))=0.87\ \ \ [Z=(X-\mu)/(\sigma)]](https://img.qammunity.org/2021/formulas/mathematics/college/hezwq35do32e0p7y4yju0tlvdh7k838ird.png)
Z-value corresponding to p-value 0.87 is -1.1263 .
So,
![(-2.6)/(\sigma)=-1.1263](https://img.qammunity.org/2021/formulas/mathematics/college/6v29lpq05yguogj1uy0ctjz38jv9gu263h.png)
![\sigma= (-2.6)/(-1.1263)\approx2.308](https://img.qammunity.org/2021/formulas/mathematics/college/wwghtdfupfoqcm0by2k1i5yzifz93k885y.png)
Hence, the required standard deviation = 2.308 .