GIVEN:
- 1/x - 1/y = ¼.
- 1/x² - 1/y² = 3/16.
TO FIND:
ANSWER:
Firstly let us assume ,
Now the equⁿ s becomes ,
=> p - q = 4 . ........(1)
Also , given that:
=> 1/x² - 1/y² = 3/16.
=> p² - q² = 3/16.
=> (p+q)(p-q) = 3/16.
From (1),
=> 4 (p+q) = 13/16.
=> (p+q) = 13/16 × 1/4.
=> p+ q = 13/64.
On adding (1) and (2) ,
=> 2p = 4 + 13/64.
=> 2p = 256+13/64.
=> p = 269/64 × 1/2.
=> p = 269/128.
Now lets find q ,
=> q = 13/64 - 269/128.
=> q = 26-269/128.
=> q = -243/128.
Hence
- p = 269/128.
- q = -243/128.
.°. x = 128/269 , y = -128/243