39.6k views
4 votes

m. \: 2cos \: a = \sqrt{2 + \sqrt{2 + √(2 + 2cos \: 8a) } }

please help me.....​
I need full work!!

m. \: 2cos \: a = \sqrt{2 + \sqrt{2 + √(2 + 2cos \: 8a) } } please help me.....​ I-example-1
User Gizgok
by
5.4k points

2 Answers

4 votes

While this is with theta instead of A it still is the same thing. I hope this helps

m. \: 2cos \: a = \sqrt{2 + \sqrt{2 + √(2 + 2cos \: 8a) } } please help me.....​ I-example-1
User Florin Petriuc
by
5.5k points
2 votes

Answer: see proof below

Explanation:

Use the following Double Angle Identity:

cos 2A = 2 cos²A - 1

Proof RHS → LHS

Given:
\sqrt{2+\sqrt{2+√(2+2cos8A)}}

Factor:
\sqrt{2+\sqrt{2+√(2(1+cos8A))}}

Let α = 4A:
\sqrt{2+\sqrt{2+√(2(1+cos2\alpha))}}

Double Angle Identity:
\sqrt{2+\sqrt{2+√(2(1+2cos^2\alpha-1))}}

Simplify:
\sqrt{2+\sqrt{2+√(2(2cos^2\alpha))}}


\sqrt{2+√(2+2cos\alpha)}}

Substitute (α = 4A):
\sqrt{2+√(2+2cos4A)}}

Factor:
\sqrt{2+√(2(1+cos4A))}}

Let β = 2A
\sqrt{2+√(2(1+cos2\beta))}}

Double Angle Identity:
\sqrt{2+√(2(1+2cos^2\beta-1))}}

Simplify:
\sqrt{2+√(2(2cos^2\beta))}}


√(2+2cos\beta)

Substitute (β = 2A):
√(2+2cos2\alpha)

Factor:
√(2(1+cos2\alpha))

Double Angle Identity:
√(2(1+2cos^2\alpha-1))

Simplify:
√(2(2cos^2A))

2 cos A

2cos A = 2cos A
\checkmark

User Droid Kid
by
5.8k points