Complete Question
The complete question is shown on the first uploaded image
Answer:
a
![P(X > 66) = P(Z> 1 ) = 0.15866](https://img.qammunity.org/2021/formulas/mathematics/college/uk74ot8dc0si2qvqx3uspeeblseck46s4h.png)
b
![P(\= X > 66) = P(Z> 2 ) = 0.02275](https://img.qammunity.org/2021/formulas/mathematics/college/xwsa7rotmpumhnv7rcaxctt7r3bh9km59l.png)
c
![P(\= X > 66) = P(Z> 10 ) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/e8rggdklcx5di3nriovynk3dj7twxbdc8a.png)
Explanation:
From the question we are told that
The population mean is
![\mu = 64 \ inches](https://img.qammunity.org/2021/formulas/mathematics/college/hd4h42ufogjrihmegvgc77trg0irkhjrea.png)
The standard deviation is
![\sigma = 2 \ inches](https://img.qammunity.org/2021/formulas/mathematics/college/hw3mrz1vo486mcah68e3zrxlrvteje8wyp.png)
The probability that a randomly selected woman is taller than 66 inches is mathematically represented as
![P(X > 66) = P((X - \mu )/(\sigma ) > ( 66 - \mu )/(\sigma) )](https://img.qammunity.org/2021/formulas/mathematics/college/kgue7zjldj702r23ab4ty82vyqxg5sb87c.png)
Generally
![( X - \mu )/(\sigma ) = Z(The \ standardized \ value \ of \ X )](https://img.qammunity.org/2021/formulas/mathematics/college/yi8iqkkiogzfu6prehfqooo68rzft1or96.png)
So
![P(X > 66) = P(Z> ( 66 - 64 )/( 2) )](https://img.qammunity.org/2021/formulas/mathematics/college/amr6458q17txxyddabw1gjkl785y7sx9ls.png)
![P(X > 66) = P(Z> 1 )](https://img.qammunity.org/2021/formulas/mathematics/college/674licjln4h1l5kdzemxvrpdd765lmhzd0.png)
From the z-table the value of
![P(Z > 1 ) = 0.15866](https://img.qammunity.org/2021/formulas/mathematics/college/l767k3fparzdcr34cerm3282g6v8cgstfe.png)
So
![P(X > 66) = P(Z> 1 ) = 0.15866](https://img.qammunity.org/2021/formulas/mathematics/college/uk74ot8dc0si2qvqx3uspeeblseck46s4h.png)
Considering b
sample mean is n = 4
Generally the standard error of mean is mathematically represented as
![\sigma _(\= x) = (\sigma )/(√(4) )](https://img.qammunity.org/2021/formulas/mathematics/college/5jljpnl363s7614biz0jpy8oujnoe0axmv.png)
=>
![\sigma _(\= x) = (2 )/(√(4) )](https://img.qammunity.org/2021/formulas/mathematics/college/j4qlkvslixp50flzxbxnphnonlbi47f1hp.png)
=>
![\sigma _(\= x) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/tt4x4uhnpbdoj15xxwp9q0z74n8hiusrha.png)
The probability that the sample mean height is greater than 66 inches
![P(\= X > 66) = P((X - \mu )/(\sigma_(\= x ) ) > ( 66 - \mu )/(\sigma_(\= x )) )](https://img.qammunity.org/2021/formulas/mathematics/college/4xkloffgj3sno45awyvjvnpubtc7btkonn.png)
=>
![P(\= X > 66) = P(Z > ( 66 - 64 )/(1) )](https://img.qammunity.org/2021/formulas/mathematics/college/q4x5zjlyddxsa20mx6dzwdukzoer901sbv.png)
=>
![P(\= X > 66) = P(Z> 2 )](https://img.qammunity.org/2021/formulas/mathematics/college/4bdn2cvkn0iyv0t6mxcowp3xqo1xn7yz3f.png)
From the z-table the value of
![P(Z > 2 ) = 0.02275](https://img.qammunity.org/2021/formulas/mathematics/college/c54nhi329k4vkyl1fecptek1r09kiqhkjb.png)
=>
![P(\= X > 66) = P(Z> 2 ) = 0.02275](https://img.qammunity.org/2021/formulas/mathematics/college/xwsa7rotmpumhnv7rcaxctt7r3bh9km59l.png)
Considering b
sample mean is n = 100
Generally the standard error of mean is mathematically represented as
![\sigma _(\= x) = (2 )/(√(100) )](https://img.qammunity.org/2021/formulas/mathematics/college/o77tgzo04pogh32q3aqq3e4murlf19mjhw.png)
=>
![\sigma _(\= x) = 0.2](https://img.qammunity.org/2021/formulas/mathematics/college/k6gyq70fknhwhax5q0yiqwmpj0ohdiwd4h.png)
The probability that the sample mean height is greater than 66 inches
![P(\= X > 66) = P(Z > ( 66 - 64 )/(0.2) )](https://img.qammunity.org/2021/formulas/mathematics/college/w1qc4mvo8vlp4wkdfy3haqje9jbg100mwt.png)
=>
![P(\= X > 66) = P(Z> 10 )](https://img.qammunity.org/2021/formulas/mathematics/college/1u2mdw80o4ompuxhv0174sggzwf0zpto7u.png)
From the z-table the value of
![P(Z > 10 ) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/i9rfxktye22nbhy33rp7wjfzetp3dmxh6l.png)
![P(\= X > 66) = P(Z> 10 ) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/e8rggdklcx5di3nriovynk3dj7twxbdc8a.png)