Answer:
The 95% confidence interval is
![0.1193 < p <0.4407](https://img.qammunity.org/2021/formulas/mathematics/college/sg9ggo057shxk9fxa8nelscjcwzp9hb0wy.png)
Explanation:
From the question we are told that
The sample size is
![m = 30](https://img.qammunity.org/2021/formulas/physics/college/vz6z2rwzuocjf7355vkwubbkq5e5xtco5f.png)
The sample proportion is
![\r p = 0.28](https://img.qammunity.org/2021/formulas/mathematics/college/uaw5g7g72vticqkls4ylqrc4i8zr84jozd.png)
Given that the confidence interval is 95% then the level of significance is mathematically represented as
![\alpha = 100 - 95](https://img.qammunity.org/2021/formulas/mathematics/college/dsyvtu098f5bowywat8dslb69iyamsnlub.png)
![\alpha = 5\%](https://img.qammunity.org/2021/formulas/mathematics/college/l6koyiq33uuw61a1y0ksuq045whs3bmre2.png)
![\alpha = 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/445n2djo6b5zbv5df68kz5tjhh2puf9bol.png)
Next we obtain the critical value of the
from the normal distribution table, the value is
![Z_{( \alpha )/(2) } = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/ystb624cjcvlole7j42l4s36p80k5hfzvd.png)
Generally the margin of error is mathematically represented as
![E = Z_{( \alpha )/(2) } * \sqrt{( ( \r p (1 - \r p )))/(n) }](https://img.qammunity.org/2021/formulas/mathematics/college/on8a6hyb9nobs3c523y5yoxbigkiau7fce.png)
=>
![E = 1.96 * \sqrt{( (0.28 (1 - 0.28 )))/( 30) }](https://img.qammunity.org/2021/formulas/mathematics/college/lovcy15wdy2cu3vr787f2s83jlyzgzmkp6.png)
=>
![E = 0.1607](https://img.qammunity.org/2021/formulas/mathematics/college/pd15aadnj0fur0xe2572j1q65mxljh1wj5.png)
The 95% confidence interval is
![\r p - E < p < \r p + E](https://img.qammunity.org/2021/formulas/mathematics/college/8lv5poopctfdi41pe2f65p5503abrcnqgz.png)
=>
![0.28 - 0.1607 < p < 0.28 + 0.1607](https://img.qammunity.org/2021/formulas/mathematics/college/gpek7qwf2t0spscp9nn5k1mcea99ic3pyo.png)
=>
![0.1193 < p <0.4407](https://img.qammunity.org/2021/formulas/mathematics/college/sg9ggo057shxk9fxa8nelscjcwzp9hb0wy.png)