Answer: P = 4.86 × 10⁻²
Therefore, the particle's quantum number is 4.86 × 10⁻²
Step-by-step explanation:
The expression of wave function for a particle in one dimensional box is given as;
φ(x) = ( √2/L ) sin ( nπx/L )
now we input our given figures, the limit of the particle to find it within the center of the box is
xₓ = L/2 + 20% of L/2
xₓ = L/2 + (0.2)L/2
xₓ = 3L/5
And the lower limit is,
x₁ = L/2 - 20% of L/2
x₁ = L/2 - (0.2) L/2
x₁ = 2L / 5
The expression for the probability of finding the particle within the center of the box is
P = ∫ˣˣₓ₁ ║φ(x)║² dx
P = ∫ ³L/⁵ ₂L/₅║(√2/L) sin ( nπx/L)║²dx
= 2/L ( ∫ ³L/⁵ ₂L/₅║sin ( nπx/L)║²dx
= 2/L ( ∫ ³L/⁵ ₂L/₅ (( 1 - cos ( 2πnx/L)/2) dx)
The particle is in its first excited state, then
n =2
Then calculate the particle's quantum number as follows;
= 2/L ( ∫ ³L/⁵ ₂L/₅ (( 1 - cos ( 2π(2)x/L)/(2)) dx)
= 1/L ( ∫ ³L/⁵ ₂L/₅ (( 1 - cos ( 4πx/L)/2) dx)
= 1/L ( x - (L/4π)sin (4πx/L)) ³L/⁵ ₂L/₅
= 1/L ((3L/5) - (L/4π) sin (( 4π(3L/5)/L)) - (( 2L/5) - (L/4π)sin ( 4π(2L/5)/L)))
= 1/L ( L/5 + L/4π (sin(8π/5) - sin ( 12π/5)))
Use the trigonometric formula to solve the above equation
sinA - sinB = 2sin ( A-B/2) cos (A+B/2)
Calculate the particle's quantum number as follows
P = 1/L ( L/5 + L/4π (sin(8π/5) - sin ( 12π/5)))
= 1/5 + 1/4π ( 2sin( (8π/5 -12π/5 ) / 2 ) cos ( (8π/5 + 12π/5) / 2 ))
= 1/5 + 1/2π ( -sin(2π/5) cos2π
= 1/5 - 1/2π ( sin (2π/5)(1))
= 0.0486 (10⁻²)(10²)
= 4.86 × 10⁻²
Therefore, the particle's quantum number is 4.86 × 10⁻²