Answer:
the 90% confidence interval is ( 48.684 , 51.316 )
Explanation:
Given that :
the sample size = 36
Sample Mean = 50
standard deviation = 4.80
The objective is to calculate a 90% confidence interval.
At 90% confidence interval ;
the level of significance = 1 - 0.9 = 0.1
The critical value for
![z_(\alpha/2) = z_(0.1/2)](https://img.qammunity.org/2021/formulas/mathematics/college/y322qd2w2eerhh7vs6wltm2cznzkd9ui5o.png)
= 1.645
The standard error S.E =
![(\sigma)/(√(n))](https://img.qammunity.org/2021/formulas/business/college/ahd84iubsxp3psb338cp7chkbjhwrvqnlo.png)
=
![(4.8)/(√(36))](https://img.qammunity.org/2021/formulas/mathematics/college/lp46pghgk2e1yom7bwbjilgyzwy33ebw5j.png)
![=(4.8)/(6)](https://img.qammunity.org/2021/formulas/mathematics/college/wa2wqjs7knfyzqplgkveakmimdi3h2i1e0.png)
= 0.8
The Confidence interval level can be computed as:
![\bar x \ \pm z * \ ( \sigma )/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/9cghzdnqvzuyqfp742i6zsr55emj7u10qe.png)
For the lower limit :
![\bar x \ - z * \ ( \sigma )/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/zwgw5awwfzddcp3o8sqtc9svdsarc7b7ks.png)
![=50 \ - 1.645 * \ ( 4.8 )/(√(36))](https://img.qammunity.org/2021/formulas/mathematics/college/p91l8zewg0u45z9zr32sg2u3r87ndhbnk0.png)
![=50 \ - 1.645 * \ 0.8 }}](https://img.qammunity.org/2021/formulas/mathematics/college/35iksrhqq460gn9c544iim0hcysm9f37pi.png)
=50 - 1.316
= 48.684
For the upper limit :
![\bar x \ - z * \ ( \sigma )/(√(n))](https://img.qammunity.org/2021/formulas/mathematics/college/zwgw5awwfzddcp3o8sqtc9svdsarc7b7ks.png)
![=50 \ + 1.645 * \ ( 4.8 )/(√(36))](https://img.qammunity.org/2021/formulas/mathematics/college/u6j4n8as7nnntb40bixuzrul5pn64nfokj.png)
![=50 \ + 1.645 * \ 0.8 }}](https://img.qammunity.org/2021/formulas/mathematics/college/hej9qis6aw7vg6d4apyfvzjc78tpv3qi04.png)
=50 + 1.316
= 51.316
Thus, the 90% confidence interval is ( 48.684 , 51.316 )