Answer:
![22.805 < \mu < 24.575\\](https://img.qammunity.org/2021/formulas/mathematics/college/5nmbif233w0y0ncea2tvsrxui8bwicnqfc.png)
Explanation:
Given parameters
Z interval E = (23.305,25.075)
mean xbar = 23.69
number of samples n = 30
Required
we are to find the confidence interval for the Z interval given.
The formula for finding the confidence interval is expressed as shown below;
where;
xbar is the mean = 30
E is the margin of error
![E = (U-L)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/2upbkbs0qmwupe0csqz108nb2afto73eg7.png)
U = upper limit = 23.305
L = lower limit = 25.075
![E = (25.075-23.305)/(2)\\E = (1.77)/(2)\\E = 0.885](https://img.qammunity.org/2021/formulas/mathematics/college/mzn6me7n1aj111y938bka9v9wli0xnazx0.png)
The confidence interval is therefore expressed as
![23.69 - 0.885 < \mu < 23.69+ 0.885\\22.805 < \mu < 24.575\\](https://img.qammunity.org/2021/formulas/mathematics/college/t8i18b5sqv4q1z60kfoeacibxk0j8q5uas.png)
Hence the confidence interval is expressed as
![22.805 < \mu < 24.575\\](https://img.qammunity.org/2021/formulas/mathematics/college/5nmbif233w0y0ncea2tvsrxui8bwicnqfc.png)