214k views
17 votes
Help me with a explanation please!!

Help me with a explanation please!!-example-1
User Bi
by
3.0k points

2 Answers

11 votes

Answer:


\sf{\Large{\bold{\orange{The \: value \: of \: \sec (D) \: is \: √(2) }}}}

Explanation:


\textsf{\large{\underline{\green{To find:-}}}}

The value of Sec(D)


\textsf{\large{\underline{\blue{Given :-}}}}

Perpendicular (P) = BC = 4√10

Base (B) = BD = 4√10


\textsf{\huge{\underline{\underline{\pink{Solution :-}}}}}

First of all we have to find length of DC to get hypotenuse

To find we will use Pythagoras theorem


\sf {(hypotenuse)}^(2) = {(perpendicular)}^(2) + {(base)}^(2) \\ \sf {H}^(2) = {P}^(2) + {B}^(2)

Now we will put the values of Perpendicular and base


\sf {H}^(2) = {(4 √(10) )}^(2) + {(4 √(10) )}^(2) \\ \sf {H}^(2) = (16 * 10) + (16 * 10) \\ \sf {H}^(2) = 160 + 160 \\ \sf {H}^(2) = 320 \\ \sf H = √(320) \\ \sf H = 8 √(5)

Hypotenuse (H) = CD = 8√5

Now we will put Sec formula

to find Sec(D)


\sf \sec(D) = (hypotenuse)/(base) = (H)/(B) \\ \implies (8 √(5) )/(4 √(10) ) \\ \implies (2 √(5) )/( √(10) ) \\ \implies (2 √(5) )/( √(2) √(5) ) \\ \implies (2)/( √(2) ) \\ \implies{ \sf {\purple {√(2) }}}

User Paul Skarseth
by
3.1k points
13 votes

Answer:


\sf sec(D)=√(2)

Explanation:

First, find the length of the hypotenuse using Pythagoras' Theorem:


a^2+b^2=c^2

(where a and b are the legs, and c is the hypotenuse, of a right triangle)

Given:


  • a=4√(10)

  • b=4√(10)

Subtituting the given values into the formula and solving for c:


\implies (4√(10))^2+(4√(10))^2=c^2


\implies 160+160=c^2


\implies c^2=320


\implies c=√(320)


\implies c=8√(5)

Therefore, the hypotenuse is
\sf 8√(5)

Secant of an angle in a right triangle:


\sf \sec(\theta)=(\sf hypotenuse)/(\sf adjacent\:side)

Given:


  • \theta = D
  • hypotenuse =
    \sf 8√(5)
  • adjacent side =
    \sf 4√(10)

Substituting the given values into the formula:


\implies \sf \sec(D)=(8√(5))/(4√(10))=\sqrt2}

User I Want Badges
by
3.5k points