216k views
1 vote
Help me with these please​

Help me with these please​-example-1

1 Answer

1 vote

Explanation:

(1) y = x e^(x²)

Take derivative with respect to x:

dy/dx = x (e^(x²) 2x) + e^(x²)

dy/dx = 2x² e^(x²) + e^(x²)

dy/dx = (2x² + 1) e^(x²)

Take derivative with respect to x again:

d²y/dx² = (2x² + 1) (e^(x²) 2x) + (4x) e^(x²)

d²y/dx² = (4x³ + 2x) e^(x²) + 4x e^(x²)

d²y/dx² = (4x³ + 6x) e^(x²)

Substitute:

d²y/dx² − 2x dy/dx − 4y

= (4x³ + 6x) e^(x²) − 2x (2x² + 1) e^(x²) − 4x e^(x²)

= 4x³ + 6x − 2x (2x² + 1) − 4x

= 4x³ + 6x − 4x³ − 2x − 4x

= 0

(2) y = sin⁻¹(√x)

sin y = √x

sin²y = x

Take derivative with respect to x:

2 sin y cos y dy/dx = 1

sin(2y) dy/dx = 1

dy/dx = csc(2y)

Take derivative with respect to x again:

d²y/dx² = -csc(2y) cot(2y) 2 dy/dx

d²y/dx² = -2 csc²(2y) cot(2y)

Substitute:

2x (1 − x) d²y/dx² + (1 − 2x) dy/dx

= 2 sin²y (1 − sin²y) (-2 csc²(2y) cot(2y)) + (1 − 2 sin²y) csc(2y)

Use power reduction formula:

= (1 − cos(2y)) (1 − ½ (1 − cos(2y))) (-2 csc²(2y) cot(2y)) + (1 − (1 − cos(2y))) csc(2y)

= (1 − cos(2y)) (1 − ½ + ½ cos(2y)) (-2 csc²(2y) cot(2y)) + cos(2y) csc(2y)

= (1 − cos(2y)) (½ + ½ cos(2y)) (-2 csc²(2y) cot(2y)) + cot(2y)

= (cos(2y) − 1) (1 + cos(2y)) csc²(2y) cot(2y) + cot(2y)

= (cos²(2y) − 1) csc²(2y) cot(2y) + cot(2y)

= -sin²(2y) csc²(2y) cot(2y) + cot(2y)

= -cot(2y) + cot(2y)

= 0

User Kashyap Kotak
by
7.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories