163k views
4 votes
I really need this answr tonight please HELP!!! Use limits to find the area between the graph of the function and the x axis given by the definite integral. ∫_1^5▒(x^2-x+1)dx

2 Answers

2 votes

Answer: 5\int_0^5 3^(3)\sqrt(x^(2)) dx

Explanation:

User Sudhee
by
6.3k points
3 votes

Answer:


\displaystyle \int\limits^5_1 {(x^2 - x + 1)} \, dx = (100)/(3)

General Formulas and Concepts:

Calculus

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Explanation:

Step 1: Define

Identify


\displaystyle \int\limits^5_1 {(x^2 - x + 1)} \, dx

Step 2: Integrate

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int\limits^5_1 {(x^2 - x + 1)} \, dx = \int\limits^5_1 {x^2} \, dx - \int\limits^5_1 {x} \, dx + \int\limits^5_1 {} \, dx
  2. [Integrals] Integration Rule [Reverse Power Rule]:
    \displaystyle \int\limits^5_1 {(x^2 - x + 1)} \, dx = \bigg( (x^3)/(3) - (x^2)/(2) + x \bigg) \bigg| \limits^5_1
  3. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle \int\limits^5_1 {(x^2 - x + 1)} \, dx = (100)/(3)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Urvashi
by
5.6k points