235k views
1 vote
If sin²∅ + sin∅ = 1 , then what is the value of sin²∅ + sin⁴∅.​

2 Answers

3 votes

Answer:

6/10

Explanation:

The value of Sin(A) is 6/10

User Dominik Dosoudil
by
4.9k points
4 votes

Answer:

Explanation:

Given sin²∅ + sin∅ = 1, we are to find the value of sin²∅ + sin⁴∅. ... 2

From sin²∅ + sin∅. = 1; sin²∅ = 1 - sin∅. ... 3

Substitute equation 3 into 1

sin²∅ + sin⁴∅

= sin²∅ + (sin²∅)²

= (1 - sin∅)+( 1 - sin∅)²

open the parenthesis

= 1 - sin∅+ (1-2sin∅+ sin²∅)

= 1 - sin∅+ 1-2sin∅+ sin²∅

= 1+1-sin∅-2sin∅+sin²∅

= 2 - 3sin∅+sin²∅

Since sin²∅ = 1 - sin∅, the resulting equation becomes;

= 2 - 3sin∅+(1 - sin∅)

= 2 - 3sin∅+1-sin∅

= 3-4sin∅

User CovertIII
by
4.7k points