Step-by-step explanation
![(4e^2+16e-9)/(2ef+12e-f-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/bl1ig7i6qbqrpshscq4z834q9m11ng9ba5.png)
⇒ First, factor the numerator by grouping:
![=(4e^2-2e+18e-9)/(2ef+12e-f-6)\\\\\\=(2e(2e-1)+9(2e-1))/(2ef+12e-f-6)\\\\\\=((2e+9)(2e-1))/(2ef+12e-f-6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/gxsc5800p1gmqli941oe60p3137sq14x6d.png)
⇒ Now, factor the denominator by grouping:
![=((2e+9)(2e-1))/(2e(f+6)-(f+6))\\\\\\=((2e+9)(2e-1))/((2e-1)(f+6))](https://img.qammunity.org/2023/formulas/mathematics/high-school/7r5mu655r5tozgg9ta4ib4thdjz35ch06y.png)
⇒ We must determine which values of e and f are unacceptable, meaning, will make this expression undefined. These will be the values of e and f that make the denominator equal to 0.
- ⇒ To find these values, let's set each term in the denominator equal to 0, and solve for e and f.
⇒
⇒
![e=(1)/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/sgvw34vrnad8zbn32ochtens68uxa9lvf5.png)
⇒
![f=-6](https://img.qammunity.org/2023/formulas/mathematics/high-school/qqpb29f5w07klww8yzqxyzpd77cem4kgz7.png)
- ⇒ The restrictions for e and f include
and
.
![=((2e+9)(2e-1))/((2e-1)(f+6))](https://img.qammunity.org/2023/formulas/mathematics/high-school/vvl43ga4nn1f2af3gr7losk4nujzrjubnr.png)
⇒ Reduce values in the numerator and denominator:
![=((2e+9))/((f+6))\\\\\\=(2e+9)/(f+6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/flk0am6tezofjma2xtvs5bgpkzi9r72o48.png)
Answer
![=(2e+9)/(f+6)](https://img.qammunity.org/2023/formulas/mathematics/high-school/yd8vv2aftd5hkmtfpyoepqm0864moqb7eh.png)