197k views
5 votes
The vertices A, B, C of a triangle are (2,1),(5,2),and (3,4) respectively . Find the coordinate of the circumcentre and also the radius of the circum-circle of the triangle

User Usmanali
by
8.5k points

1 Answer

7 votes

Answer:

Circumcenter = (4,0)

Circumcircle = √5

Explanation:

The circumcentre is the point of intersection of the perpendicular bisectors of a triangle. The vertices of the triangle are equidistant to the circumcentre.

Let us assume the coordinate of the circumcentre is at O(x, y). Therefore the distance between the cirmcumcenter and the vertices are:


AO=√((x-2)^2+(y-1)^2) =√(x^2-4x+4+(y^2-2y+1))\\=√(x^2+y^2-4x-2y+5) \\\\BO=√((x-5)^2+(y-2)^2) =√(x^2-10x+25+(y^2-4y+4))\\=√(x^2+y^2-10x-4y+29) \\\\CO=√((x-3)^2+(y-4)^2) \\=√(x^2-9x+9+(y^2-8y+16))=√(x^2+y^2-9x-8y+25) \\

AO = BO, therefore

√(x² + y²-4x-2y+5) = √(x² + y² - 10x - 4y + 29)

x² + y²-4x-2y+5 = x² + y² - 10x - 4y + 29

6x + 2y = 24 (1)

BO = CO

√(x² + y² - 10x - 4y + 29) = √(x² + y² - 9x - 8y + 25)

x² + y² - 10x - 4y + 29 = x² + y² - 9x - 8y + 25

-x + 4y = -4 (2)

Multiply equation 2 by 6 and add to equation 1:

26y = 0

y=0

Put y = 0 in -x + 4y = -4

-x + 4(0) = -4

x = 4

The cicumcenter is at (4, 0)

The radius of the circumcircle = AO = BO = CO. Therefore:


Radius=AO=√((4-2)^2+(0-1)^2) =√(4+1)=√(5)

User Dan Murfitt
by
7.4k points