47.6k views
4 votes
Prove the Identity

{tan}^(2) x - {sin}^(2) x = {tan}^(2) x{sin}^(2) x


2 Answers

3 votes

Answer:

check pic

step-by-step explanation

check pic

Prove the Identity {tan}^(2) x - {sin}^(2) x = {tan}^(2) x{sin}^(2) x ​-example-1
User SMMousaviSP
by
8.8k points
1 vote

Answer:

see below

Explanation:

tan ^2 x -sin ^2 x = tan ^2x sin ^2x

tan = sin / cos

sin ^2 x / cos ^2 x -sin ^2 x = sin ^2 x / cos ^2 x * sin^2 x

Multiply each side by cos ^2

cos ^ x (sin ^2 x / cos ^2 x -sin ^2 x) = cos ^2 x(sin ^2 x / cos ^2 x * sin ^2x)

sin ^2 x - cos ^2 x sin ^2 x = sin ^2 x * sin ^2x

Factor out sin ^2 x

sin ^2 x(1 - cos ^2 x) = sin ^2 x * sin^2 x

We know that 1 - cos ^2 x = sin ^2 x

sin ^2 x(sin ^2 x) = sin ^2 x * sin^2 x

User Steve Fitzsimons
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories