130k views
1 vote
Let (8,−3) be a point on the terminal side of θ. Find the exact values of cosθ, cscθ, and tanθ.

Let (8,−3) be a point on the terminal side of θ. Find the exact values of cosθ, csc-example-1

1 Answer

4 votes

Answer:


\text{Cos}\theta=\frac{\text{Adjacent side}}{\text{Hypotenuse}}=(x)/(R)=(8)/(√(73))


\text{Csc}\theta=-(√(73))/(3)


\text{tan}\theta =\frac{\text{Opposite side}}{\text{Adjacent side}}=(y)/(x)=(-3)/(8)

Explanation:

From the picture attached,

(8, -3) is a point on the terminal side of angle θ.

Therefore, distance 'R' from the origin will be,

R =
\sqrt{x^(2)+y^(2)}

R =
\sqrt{8^(2)+(-3)^2}

=
√(64+9)

=
√(73)

Therefore, Cosθ =
\frac{\text{Adjacent side}}{\text{Hypotenuse}}=(x)/(R)=(8)/(√(73))

Sinθ =
\frac{\text{Opposite side}}{\text{Hypotenuse}}=(y)/(R)=(-3)/(√(73) )

tanθ =
\frac{\text{Opposite side}}{\text{Adjacent side}}=(y)/(x)=(-3)/(8)

Cscθ =
\frac{1}{\text{Sin}\theta}=(R)/(y)=-(√(73))/(3)

Let (8,−3) be a point on the terminal side of θ. Find the exact values of cosθ, csc-example-1
User Zubair Ahmed
by
4.2k points