24.5k views
3 votes
Cesium-137 is part of the nuclear waste produced by uranium-235 fission. The half-life of cesium-137 is 30.2 years. How much time is required for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value?

User Nihal
by
6.8k points

1 Answer

5 votes

Answer:

There are required 70.1 years for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value

Step-by-step explanation:

The radioactive decay follows always first-order kinetics where its general law is:

Ln[A] = -Kt + ln[A]₀

Where [A] is actual concentration of the atom, k is rate constant, t is time and [A]₀ is initial concentration.

We can find rate constant from half-life as follows:

Rate constant:

t(1/2) = ln 2 / K

As half-life of Cesium-137 is 30.2 years:

30.2 years = ln 2 / K

K = 0.02295 years⁻¹

Replacing this result and with the given data of the problem:

Ln[A] = -Kt + ln[A]₀

Ln[A] = -0.02295 years⁻¹* t + ln[A]₀

Ln ([A] / [A₀]) = -0.02295 years⁻¹* t

As you want time when [A] is 20% of [A]₀, [A] / [A]₀ = 0.2:

Ln (0.2) = -0.02295 years⁻¹* t

70.1 years = t

There are required 70.1 years for the activity of a sample of cesium-137 to fall to 20.0 percent of its original value

User DermFrench
by
8.3k points