26.2k views
5 votes
The population distribution of SAT scores is normal with a mean of μ=500 and a standard deviation of SD=100. For example, what is the probability of randomly selecting an individual from this population who has an SAT score greater than 700?

User GeoJim
by
7.6k points

1 Answer

2 votes

Answer:

0.02275

Explanation:

We use the z score formula to solve for this

z-score is given as: z = (x-μ)/σ

where x is the raw score,

μ is the population mean

σ is the population standard deviation

In the above question:

mean of μ=500

a standard deviation of SD=100

raw score x = 700

Hence, z score = (700 - 500)/ 100

= 200/100

= 2

z score = 2

Using the z score table of normal distribution to find the Probability of z = 2

P( x = z)

= P(x = 700)

= P( z = 2)

= 0.97725

P(x>700) = 1 - P(x = 700)

= 1 - 0.97725

= 0.02275

Therefore, the probability of randomly selecting an individual from this population who has an SAT score greater than 700 is 0.02275

User Albert Bos
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.