Answer:
The 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).
Explanation:
The (1 - α)% confidence interval for the population proportion is:
![CI=\hat p\pm z_(\alpha/2)\cdot\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/bwmrt0tr8dh0ksqjriq2tmi29db2pj8c1o.png)
The information provided is:
![\hat p=0.65\\n=500\\\text{Confidence level}=95\%](https://img.qammunity.org/2021/formulas/mathematics/college/j2mgl2jh3kdlh7dhsij5f20dznuuzvbncx.png)
The critical value of z for 95% confidence level is:
![z_(\alpha/2)=z_(0.05/2)=z_(0.025)=1.96](https://img.qammunity.org/2021/formulas/mathematics/college/vam708pm2nut2uot2tvdk2houuliqjdhxy.png)
*Use a z-table.
Compute the 95% confidence interval for the proportion opposing health care changes as follows:
![CI=\hat p\pm z_(\alpha/2)\cdot\sqrt{(\hat p(1-\hat p))/(n)}](https://img.qammunity.org/2021/formulas/mathematics/college/bwmrt0tr8dh0ksqjriq2tmi29db2pj8c1o.png)
![=0.65\pm 1.96\sqrt{(0.65(1-0.65))/(500)}\\\\=0.65\pm 0.04181\\\\=(0.60819, 0.69181)\\\\\approx (0.6082, 0.6918)](https://img.qammunity.org/2021/formulas/mathematics/college/dd32ub7p2c3z6kz0iigq7nltvxe8r44i7v.png)
Thus, the 95% confidence interval for the proportion opposing health care changes is (0.6082, 0.6918).