Answer:
Volume = 40 5/8 cm³
Explanation:
Given dimensions of cuboid:
- Length: 2 1/2
- Width: 2 1/2
- Height: 6 1/2
Volume = Length × Width × Height
1. Substitute the length, width, and the height in the formula;
⇒ Volume = Length × Width × Height
⇒ Volume = 2 1/2 × 2 1/2 × 6 1/2
2. Convert the mixed fractions into improper fractions;
⇒ Volume = 2 1/2 × 2 1/2 × 6 1/2
⇒ Volume = [(2 × 2) + 1]/2 × [(2 × 2) + 1]/2 × [(6 × 2) + 1]/2
3. Simplify using PEMDAS;
⇒ Volume = [(4) + 1]/2 × [(4) + 1]/2 × [(12) + 1]/2
⇒ Volume = [5]/2 × [5]/2 × [13]/2
⇒ Volume = 5/2 × 5/2 × 13/2
4. Multiply the fractions;
⇒ Volume = 5/2 × 5/2 × 13/2
⇒ Volume = (5 × 5 × 13)/(2 × 2 × 2)
⇒ Volume = (325)/(8)
5. Convert the fraction into mixed fraction (As stated in question);
Subtract such number from 325 such that the number is divisible by 8.
⇒ Volume = (325)/(8)
⇒ Volume = [(325 - 5)/(8)] + 5/8 [320/8 ⇒ Divisible by 8]
⇒ Volume = [(320)/(8)] + 5/8
⇒ Volume = 40 + 5/8
⇒ Volume = 40 5/8 cm³
Therefore, the volume of the cuboid is 40 5/8 cm³ (in mixed fraction).