Complete Question
The complete question is shown on the first uploaded image
Answer:
The 90% confidence interval is
![[108.165 ,112.895]](https://img.qammunity.org/2021/formulas/mathematics/college/cnlrziy090lecsrwab6luox5ehri19t8ip.png)
The 95% confidence interval is
![[107.7123 ,113.3477]](https://img.qammunity.org/2021/formulas/mathematics/college/j4ho34f4pynfkcpxgnv0l2o4k885tghrpy.png)
The correct option is D
Explanation:
From the question we are told that
The sample size is n = 48
The sample mean is
![\= x = \$ 110.53](https://img.qammunity.org/2021/formulas/mathematics/college/omfs7lrudlh7vtfqnb2618sdbmjaoqve4q.png)
The standard deviation is
![\sigma = \$ 9.96](https://img.qammunity.org/2021/formulas/mathematics/college/ulxq38sikorhsclzev47aj1r84e6o8vnqy.png)
Considering first question
Given that the confidence level is 90% then the level of significance is mathematically represented as
![\alpha = (100 - 90)\%](https://img.qammunity.org/2021/formulas/mathematics/college/i8z30d7xike4z1efqwxyrepkxwsrp66tdy.png)
![\alpha = 0.10](https://img.qammunity.org/2021/formulas/engineering/college/jps3unr82c4ioxfx6y9497rl6wkf1r013l.png)
The critical value of
from the normal distribution table is
![Z_{(\alpha )/(2) } = 1.645](https://img.qammunity.org/2021/formulas/mathematics/college/hb20l1pa0xvf0qij6khlrpgwfqdpanx7r1.png)
Generally the margin of error is mathematically represented as
![E = ZZ_{ (x)/(y) } * (\sigma)/( √(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/axxrzjpllt45wkc5ndesuw7vcppt3z417o.png)
![E = 1.645 * (9.96)/( √( 48) )](https://img.qammunity.org/2021/formulas/mathematics/college/j6hztbo53cdktasokfv23z4undrp1rf5wf.png)
![E = 2.365](https://img.qammunity.org/2021/formulas/mathematics/college/4pcsfwzd9zba19necphq28wvpx5s6h33kk.png)
The 90% confidence interval is
![\= x - E < \mu < \= x + E](https://img.qammunity.org/2021/formulas/mathematics/college/xzqtqboxae51ygb3gidbha1g9wltku72bq.png)
=>
![110.53 - 2.365 < \mu < 110.53 + 2.365](https://img.qammunity.org/2021/formulas/mathematics/college/umjq6sytjl8mwc7w2ahz7ajyk1cd6vt6kl.png)
=>
![108.165 < \mu < 112.895](https://img.qammunity.org/2021/formulas/mathematics/college/9x55ol376xstisgtby9d6j7xm4h6r9niih.png)
Considering second question
Given that the confidence level is 95% then the level of significance is mathematically represented as
![\alpha = (100 - 95)\%](https://img.qammunity.org/2021/formulas/mathematics/college/j4m0v47f1t0ynpyhcidp0gg4j1wbu34cj7.png)
![\alpha = 0.05](https://img.qammunity.org/2021/formulas/mathematics/college/445n2djo6b5zbv5df68kz5tjhh2puf9bol.png)
The critical value of
from the normal distribution table is
![Z_{(\alpha )/(2) } = 1.96](https://img.qammunity.org/2021/formulas/mathematics/college/j1sty0e65wk0mj6v8cooneb8nafswly7zz.png)
Generally the margin of error is mathematically represented as
![E = Z_{ (x)/(y) } * (\sigma)/( √(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/z8gkg254jls3d7m5i7epadf9rprt48z1sz.png)
![E = 1.96 * (9.96)/( √( 48) )](https://img.qammunity.org/2021/formulas/mathematics/college/zz4awsxb3bu9fdkg9bpb8anjerz4t3sql3.png)
![E = 2.8177](https://img.qammunity.org/2021/formulas/mathematics/college/lpl42tg1bzhn5fxkikt879sbkja7bthws6.png)
The 95% confidence interval is
![\= x - E < \mu < \= x + E](https://img.qammunity.org/2021/formulas/mathematics/college/xzqtqboxae51ygb3gidbha1g9wltku72bq.png)
=>
![110.53 - 2.8177 < \mu < 110.53 + 2.8177](https://img.qammunity.org/2021/formulas/mathematics/college/89wdl07f02h10sdz0p97xmojt1s1sxlp0q.png)
=>
![107.7123 < \mu < 113.3477](https://img.qammunity.org/2021/formulas/mathematics/college/k5i1p5jpd8uvhbxrg6nyq05d9dnbm4y6qf.png)