Answer:
f(g(x)) = 2x² + x
Explanation:
f(x) = 2x² – 3x + 1 and g(x) = x + 1
→substitute g(x) for x + 1
f(g(x)) = f (x + 1)
→substitute x for x+1 into the f(x) equation
f(g(x)) = f (x + 1) = 2(x+1)² – 3(x+1) + 1
→calculate
f(g(x)) = 2(x+1)² – 3(x+1) + 1 , square x+1
f(g(x)) = 2( x²+2x+1) -3(x+1) +1 , distribute in parenthesis
f(g(x)) = 2x²+4x+2 -3x -3 +1, combine like terms
f(g(x)) = 2x² + x