Answer:
1. Tan θ = √11/5
2. Cosec θ = 6√11 /11
3. Cos θ = 5/6
Explanation:
Let the side opposite to angle θ be y.
The value of y can be obtained by using the pythagoras theory as follow:
b² = 6² – 5²
b² = 36 – 25
b² = 11
Take the square root of both side.
b = √11
1. Determination of Tan θ
Tan θ =?
Opposite = √11
Adjacent = 5
Tan θ = Opposite /Adjacent
Tan θ = √11/5
2. Determination of Cosec θ.
We'll begin by calculating the Sine θ. This is illustrated below:
Sine θ =?
Opposite = √11
Hypothenus = 6
Sine θ = Opposite /Hypothenus
Sine θ = √11/6
Now, we shall determine Cosec θ as follow:
Cosec θ = 1/Sine θ
Sine θ = √11/6
Cosec θ = 1 ÷ √11/6
Cosec θ = 1 × 6/√11
Cosec θ = 6/√11
Rationalise the denominator
Cosec θ = 6/√11 × √11/√11
Cosec θ = 6√11 /11
3. Determination of Cos θ.
Cos θ =?
Adjacent = 5
Hypothenus = 6
Cos θ = Adjacent / Hypothenus
Cos θ = 5/6