Answer:
The 90% confidence interval is
![\$ \ 30313.9< \mu < \$ \ 33686.13](https://img.qammunity.org/2021/formulas/mathematics/college/25pepzhj8zrd9ejgsp30y8ayq8i688jzal.png)
Explanation:
From the question we are told that
The sample size is n = 64
The sample mean is
![\= x = \$ 32, 000](https://img.qammunity.org/2021/formulas/mathematics/college/wpa730ltr8g6osnx09ggds3e5grkq26zrr.png)
The standard deviation is
![\sigma= \$ 8, 200](https://img.qammunity.org/2021/formulas/mathematics/college/bq1bspborhqcqdr0fw1uez74kp19f74mg0.png)
Given that the confidence interval is 90% then the level of significance is mathematically evaluated as
![\alpha = 100 - 90](https://img.qammunity.org/2021/formulas/mathematics/college/fwh01l3ooaz1fnadlrtluzm6sctza2ktpy.png)
![\alpha = 0.10](https://img.qammunity.org/2021/formulas/engineering/college/jps3unr82c4ioxfx6y9497rl6wkf1r013l.png)
Next we obtain the critical value of
from the normal distribution table , the value is
![Z_{(\alpha )/(2) } = 1.645](https://img.qammunity.org/2021/formulas/mathematics/college/hb20l1pa0xvf0qij6khlrpgwfqdpanx7r1.png)
Generally the margin of error is mathematically represented as
![E = Z_{(\alpha )/(2) } * ( \sigma )/( √(n) )](https://img.qammunity.org/2021/formulas/mathematics/college/v4ure069cmwrrrqrno95igrg7dbslvqim7.png)
=>
![E = 1.645 * ( 8200 )/( √(64) )](https://img.qammunity.org/2021/formulas/mathematics/college/5iw37yn20wie737jred8ft3khwlbvtg4yd.png)
=>
![E = 1686.13](https://img.qammunity.org/2021/formulas/mathematics/college/d0veofu40fv8nn3veyxvyl0ysjcafq1ujr.png)
The 90% confidence interval is mathematically represented as
![\= x - E < \mu < \= x + E](https://img.qammunity.org/2021/formulas/mathematics/college/xzqtqboxae51ygb3gidbha1g9wltku72bq.png)
=>
![32000 - 1689.13 < \mu < 32000 + 1689.13](https://img.qammunity.org/2021/formulas/mathematics/college/b9v11j637pwpc23ngkugq3xdxmvxdadg3y.png)
=>
![\$ \ 30313.9< \mu < \$ \ 33686.13](https://img.qammunity.org/2021/formulas/mathematics/college/25pepzhj8zrd9ejgsp30y8ayq8i688jzal.png)