151k views
4 votes
Please help me Tramserran mam...​

Please help me Tramserran mam...​-example-1

1 Answer

4 votes

Answer: see proof below

Explanation:

Use the following when solving the proof...

Double Angle Identity: cos2A = 1 - 2sin²B

Pythagorean Identity: cos²A + sin²A = 1

note that A can be replaced with B

Proof from LHS → RHS

Given: cos²A + sin²A · cos2B

Double Angle Identity: cos²A + sin²A(1 - 2sin²B)

Distribute: cos²A + sin²A - 2sin²A·sin²B

Pythagorean Identity: 1 - 2sin²A·sin²B

Pythagorean Identity: cos²B + sin²B - 2sin²A·sin²B

Factor: cos²A + sin²B(1 - 2sin²A)

Double Angle Identity: cos²B + sin²B · cos2A

cos²B + sin²B · cos2A = cos²B + sin²B · cos2A
\checkmark

User Maury Markowitz
by
4.6k points