Answer:
![4x^2-21x-2](https://img.qammunity.org/2021/formulas/mathematics/college/pennr88cwal0x9m6s44mpdz2ly5a0og8fe.png)
Explanation:
Given that:
Difference of two trinomials is
![x^2 - 10x + 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/7lq6mo23rle6rwp1ldi94xfy5rvni7vaj1.png)
One of the two trinomials is
![3x^2 - 11x - 4](https://img.qammunity.org/2021/formulas/mathematics/college/55efb1sar5g9rczlz8s8puz02a1b08xdfq.png)
To find:
The other trinomial = ?
Four options are:
![2x2 - x - 2 \\2x2 + x + 6 \\4x2 + 21x + 6\\ 4x2 - 21x - 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/ybqzkgl1pleigmxx3n61jygwygl93l6zgi.png)
Solution:
Let the two trinomials be A and B.
Given A - B =
![x^2 - 10x + 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/7lq6mo23rle6rwp1ldi94xfy5rvni7vaj1.png)
B =
![3x^2 - 11x - 4](https://img.qammunity.org/2021/formulas/mathematics/college/55efb1sar5g9rczlz8s8puz02a1b08xdfq.png)
We have to find the other trinomial A.
A - B =
![x^2 - 10x + 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/7lq6mo23rle6rwp1ldi94xfy5rvni7vaj1.png)
A - (
) =
![x^2 - 10x + 2](https://img.qammunity.org/2021/formulas/mathematics/high-school/7lq6mo23rle6rwp1ldi94xfy5rvni7vaj1.png)
A =
+ (
)
A =
![4x^2-21x-2](https://img.qammunity.org/2021/formulas/mathematics/college/pennr88cwal0x9m6s44mpdz2ly5a0og8fe.png)
So, the correct answer is
.