Parameterize this surface (call it S) by
![\mathbf s(u,v)=u\cos v\,\mathbf i+u\sin v\,\mathbf j+u^2\,\mathbf k](https://img.qammunity.org/2021/formulas/mathematics/college/hgtshpc289y6qzjtlq9xbgi5sfplfoysdg.png)
with
and
.
The normal vector to S is
![\mathbf n=(\partial\mathbf s)/(\partial u)*(\partial\mathbf s)/(\partial v)=-2u^2\cos v\,\mathbf i-2u^2\sin v\,\mathbf j+u\,\mathbf k](https://img.qammunity.org/2021/formulas/mathematics/college/y5venhhyw9tk8sbfrup8n49mwzq0zklc41.png)
Compute the curl of F :
![\\abla*\mathbf F=-2\,\mathbf i+3\,\mathbf j+5\,\mathbf k](https://img.qammunity.org/2021/formulas/mathematics/college/3mmjwub2gktb766uo11ipsut8rccownf78.png)
So the flux of curl(F) is
![\displaystyle\iint_S(\\abla*\mathbf F)\cdot\mathrm d\mathbf S=\int_0^(2\pi)\int_0^2(\\abla*\mathbf F)\cdot\mathbf n\,\mathrm du\,\mathrm dv](https://img.qammunity.org/2021/formulas/mathematics/college/bl4a7xv8bmbdscul0wav2unhjl900cygkr.png)
![=\displaystyle\int_0^(2\pi)\int_0^2(5u+4u^2\cos v-6u^2\sin v)\,\mathrm du\,\mathrm dv=\boxed{20\pi}](https://img.qammunity.org/2021/formulas/mathematics/college/r52ifivpza224yxilsl78v582iioqlyzxx.png)
Alternatively, you can apply Stokes' theorem, which reduces the surface integral of the curl of F to the line integral of F along the intersection of the paraboloid with the plane z = 4. Parameterize this curve (call it C) by
![\mathbf r(t)=2\cos t\,\mathbf i+2\sin t\,\mathbf j+3\,\mathbf k](https://img.qammunity.org/2021/formulas/mathematics/college/wyhwzt5c9om47ee71kuu1dnw2i7tvxlwg2.png)
with
. Then
![\displaystyle\iint_S(\\abla*\mathbf F)\cdot\mathrm d\mathbf S=\int_0^(2\pi)\mathbf F\cdot\mathrm d\mathbf r](https://img.qammunity.org/2021/formulas/mathematics/college/73jd7cb0ch4gfbwce185nan6l0jw031elg.png)
![=\displaystyle\int_0^(2\pi)(20\cos^2t-24\sin t)\,\mathrm dt=\boxed{20\pi}](https://img.qammunity.org/2021/formulas/mathematics/college/t8q0w1jz9662rxzjdg2ryfz9nxafwa6elr.png)