188k views
0 votes
Use De Moivre's theorem to find the indicated power of the complex number. Write the answer in rectangular form.[2(cos10∘ + i sin10∘)]^3.

User Splunk
by
5.1k points

1 Answer

2 votes

Answer:


\bold{4\sqrt3 + i4}

Explanation:

Given complex number is:


[2(cos10^\circ + i sin10^\circ)]^3

To find:

Answer in rectangular form after using De Moivre's theorem = ?

i.e. the form
a+ib (not in forms of angles)

Solution:

De Moivre's theorem provides us a way of solving the powers of complex numbers written in polar form.

As per De Moivre's theorem:


(cos\theta+isin\theta)^n = cos(n\theta)+i(sin(n\theta))

So, the given complex number can be written as:


[2(cos10^\circ + i sin10^\circ)]^3\\\Rightarrow 2^3 * (cos10^\circ + i sin10^\circ)^3

Now, using De Moivre's theorem:


\Rightarrow 2^3 * (cos10^\circ + i sin10^\circ)^3\\\Rightarrow 8 * [cos(3 *10)^\circ + i sin(3 *10^\circ)]\\\Rightarrow 8 * (cos30^\circ + i sin30^\circ)\\\Rightarrow 8 * (\frac{\sqrt3}2 + i (1)/(2))\\\Rightarrow \frac{\sqrt3}2* 8 + i (1)/(2)* 8\\\Rightarrow \bold{4\sqrt3 + i4}

So, the answer in rectangular form is:


\bold{4\sqrt3 + i4}

User Yannick Pezeu
by
5.7k points