Answer:
or
or
![x > 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nsngtgkmnc0a961xchspqbbtzymrv2puuh.png)
Explanation:
Given
![(x + 1)(x - 2) (x - 3) > 0](https://img.qammunity.org/2021/formulas/mathematics/college/gg838dtifcjmebqomz8htebr2wz883ex4n.png)
Required
Solve; with steps
![(x + 1)(x - 2) (x - 3) > 0](https://img.qammunity.org/2021/formulas/mathematics/college/gg838dtifcjmebqomz8htebr2wz883ex4n.png)
Start by splitting the inequality as follows
or
or
![x - 3 > 0](https://img.qammunity.org/2021/formulas/mathematics/college/puss3i68xwm87l3fpu98nxszit4rrfutbm.png)
Solve the inequalities one after the other
Solving:
![x + 1 > 0](https://img.qammunity.org/2021/formulas/mathematics/college/6ldpfibrdfixk0bwajutg20edqrkwp641n.png)
Subtract 1 from both sides
![x + 1 - 1 > 0 - 1](https://img.qammunity.org/2021/formulas/mathematics/college/62bt209v4ob5gq5xhbgz3fyky1goyg4jz9.png)
![x > -1](https://img.qammunity.org/2021/formulas/mathematics/college/nn9a4ywxt4h89na6o2tr8603k0n6rn3ld6.png)
Solving:
![x - 2 > 0](https://img.qammunity.org/2021/formulas/mathematics/college/zo1olzsgd0gmqj16rscftdqh8i16ouoirb.png)
Add 2 to both sides
![x - 2 +2 > 0 +2](https://img.qammunity.org/2021/formulas/mathematics/college/tau440kuoxl7xebw6jnu3hc02uox47t73n.png)
![x > 2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/koz288702nv3zje4sok4aqlewqiwpz67j5.png)
Solving:
![x - 3 > 0](https://img.qammunity.org/2021/formulas/mathematics/college/puss3i68xwm87l3fpu98nxszit4rrfutbm.png)
Add 3 to both sides
![x - 3 +3> 0+3](https://img.qammunity.org/2021/formulas/mathematics/college/jbtck1ph2zv70k16m6n3piijb4xs80frxj.png)
![x > 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nsngtgkmnc0a961xchspqbbtzymrv2puuh.png)
Hence, the solution to the inequality is
or
or
![x > 3](https://img.qammunity.org/2021/formulas/mathematics/middle-school/nsngtgkmnc0a961xchspqbbtzymrv2puuh.png)