Answer:
the final angular velocity of the particle is approximately 38.18 Rad/s
Step-by-step explanation:
To start with, let's make sure that units of angle measure are the same, converting everything into radians:
![4500^o\, (\pi)/(180^o)= 25\,\pi](https://img.qammunity.org/2021/formulas/physics/college/mae111l05moa2ejl9i013q2dikdsm3qsa8.png)
And now we can use the kinematic formulas for rotational motion:
![\theta-\theta_0=\omega_0\,t+(1)/(2) \alpha\,t^2](https://img.qammunity.org/2021/formulas/physics/college/8fj49wsyqftk591wf5x8gvb3zbhcg633ni.png)
Therefore we can find the initial angular velocity
of the particle:
![\theta-\theta_0=\omega_0\,t+(1)/(2) \alpha\,t^2\\25\,\pi=\omega_0\,(3)+(1)/(2) (8)\,(3)^2\\25\,\pi-36=\omega_0\,(3)\\\omega_0=(25\,\pi-36)/(3) \\\omega_0\approx 14.18\,\,\,rad/s](https://img.qammunity.org/2021/formulas/physics/college/zagxya3z7e7pw1m9zc8l2vihcg5wuxnp6x.png)
and now we can estimate the final angular velocity using the kinematic equation for angular velocity;
![\omega=\omega_0\,+\alpha\,t\\\omega=14.18+8\,(3)\\\omega=38.18\,\,\,rad/s](https://img.qammunity.org/2021/formulas/physics/college/k3ff8cz8xr7gqwhtm5wnb0nuh29wgfu1vj.png)