43.4k views
3 votes
If


√(5) x = √(3) x + √(7)
find the value of x in the form

\sqrt{ (a)/(b) }


2 Answers

3 votes
x= 7/4 x 25/6 is the answer
User Agusgambina
by
4.3k points
5 votes

Answer:


$x=\sqrt{(7(4+√(15)))/(2)} $

Explanation:

From the way it is written, the
x is outside the square root. I will rewrite it as:


x√(5) =x√(3) +√(7)


x√(5)-x√(3)=√(7)


x(√(5) - √(3) )=√(7)


$x= (√(7) )/(√(5) - √(3)) \implies (√(7)(√(5) + √(3)) )/(2) $


$x=(1)/(2) √(7) (√(5) + √(3) )$


$x=(√(35))/(2) +( √(21))/(2) $


$x=(√(35)+√(21))/(2) $

Multiply denominator and numerator by 3


$x=(3√(35)+3 √(21))/(6) $

Factor
√(3)


√(3) (√(105)+3 √(7))


$x=(√(3) (√(105)+3 √(7)))/(6) $

Divide denominator and numerator by
√(3)


$x=(√(105)+3 √(7))/(2√(3) ) $

Let's rewrite it again


$x=\frac{\sqrt{ (√(105)+3 √(7))^2}}{√(12) } $


$x=\sqrt{ (1)/(12) \cdot (√(105)+3 √(7))^2}$

It is already in the form
$\sqrt{(a)/(b) } $

Expanding the perfect square, we have


63+42√(15)+105


$(63)/(12) +(42√(15))/(12) +(105)/(12) $


$(21)/(4) +(7√(15))/(2) +(35)/(4) $

Factor
$(7)/(2) $


$(7)/(2) (4+√(15) )$

Therefore,


$x=\sqrt{(7)/(2) \left(4+√(15) \right)} $


$x=\sqrt{(7(4+√(15)))/(2)} $

User Wolfgang Ziegler
by
4.2k points