43.5k views
3 votes
If


√(5) x = √(3) x + √(7)
find the value of x in the form

\sqrt{ (a)/(b) }


2 Answers

3 votes
x= 7/4 x 25/6 is the answer
User Agusgambina
by
8.0k points
5 votes

Answer:


$x=\sqrt{(7(4+√(15)))/(2)} $

Explanation:

From the way it is written, the
x is outside the square root. I will rewrite it as:


x√(5) =x√(3) +√(7)


x√(5)-x√(3)=√(7)


x(√(5) - √(3) )=√(7)


$x= (√(7) )/(√(5) - √(3)) \implies (√(7)(√(5) + √(3)) )/(2) $


$x=(1)/(2) √(7) (√(5) + √(3) )$


$x=(√(35))/(2) +( √(21))/(2) $


$x=(√(35)+√(21))/(2) $

Multiply denominator and numerator by 3


$x=(3√(35)+3 √(21))/(6) $

Factor
√(3)


√(3) (√(105)+3 √(7))


$x=(√(3) (√(105)+3 √(7)))/(6) $

Divide denominator and numerator by
√(3)


$x=(√(105)+3 √(7))/(2√(3) ) $

Let's rewrite it again


$x=\frac{\sqrt{ (√(105)+3 √(7))^2}}{√(12) } $


$x=\sqrt{ (1)/(12) \cdot (√(105)+3 √(7))^2}$

It is already in the form
$\sqrt{(a)/(b) } $

Expanding the perfect square, we have


63+42√(15)+105


$(63)/(12) +(42√(15))/(12) +(105)/(12) $


$(21)/(4) +(7√(15))/(2) +(35)/(4) $

Factor
$(7)/(2) $


$(7)/(2) (4+√(15) )$

Therefore,


$x=\sqrt{(7)/(2) \left(4+√(15) \right)} $


$x=\sqrt{(7(4+√(15)))/(2)} $

User Wolfgang Ziegler
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories