102,655 views
21 votes
21 votes
Please help me out!!! There’s 25 questions I can’t

Please help me out!!! There’s 25 questions I can’t-example-1
User Silverdust
by
2.8k points

2 Answers

12 votes
12 votes

Explanation -:

In this question we are provided with the height and radius. We are asked to calculate the volume of a composite solid

First we will find the volume of a cone

We know,


\orange{\star \: \small\boxed{ \sf{ Volume_((cone)) = (1)/(3)πr²h}}}

Where,

  • r stand for radius
  • h stand for height
  • Assuming π as 3.14

Substituting the values we get


\small\bf Volume_((cone)) = (1)/(3) * 3.14×4 × 4×5


\rightarrow \small\rm{ Volume_((cone)) = (1)/(3)×251.2}


\small\sf{ Volume_((cone)) = 83.73 \:cubic \: units }

Now we will calculate the volume of a hemisphere

We know,


\red{\star \: \small \boxed{\sf{ Volume_((hemisphere)) = (2)/(3)πr³}}}

Substituting the values we get


\small\bf{ Volume_((hemisphere)) = (2)/(3) * 3.14 × 4 × 4 × 4}


\rightarrow\small\rm{ Volume_((hemisphere)) = (2)/(3) * 200.96}


\rightarrow\small\rm{Volume_((hemisphere)) = 2 * 66.98}


\small\sf{ Volume_((hemisphere)) =133.97}

Now we will calculate the volume

Volume = 83.73 + 133.97 = 217.70 cubic units

User BlueTune
by
2.6k points
27 votes
27 votes

Answer:

217.70 cubic units

Explanation:

Volume of composite solid

Cone:

h= 5 units & r = 4 units


\sf \boxed{Volume \ of \ cone = (1)/(3) \pi r^2h}


\sf = (1)/(3)*3.14*4*4*5\\\\ = 83.73 \ cubic units

Hemisphere:

r = 4 units


\sf \boxed{Volume \ of \ hemisphere = (2)/(3) \pi r^3}


\sf = (2)/(3)*3.14*4*4*4\\\\= 133.97 \ cubicunits

Volume of composite solid = 83.73 + 133.97

= 217.70 cubic units

User Roberto Betancourt
by
2.9k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.