Answer:
Explanation:
● f(x) = -x^4 -2
● g(x) = -3x^3 + 2
Derivate both functions:
● f'(x) = -4x^3
● g'(x) = -9x^2
Solve the equations f'(x) =0 and g'(x) =0
● f'(x) = 0
● -4x^3 = 0
● x^3 = 0
● x =0
● g'(x) = 0
● -9x^2 = 0
● x^2 =0
● x = 0
So both functions f and g reach their maximum at 0.
● f(0) = 0^4-2 = -2
● g(0) = -3×0^3 +2 = 2
So g(0)>f(0)
So g has the largest maximum value.