50.9k views
3 votes
HELP ASAP

What is the distance, in units, between the points
(-3, -4) and
(4, -5)? Express your answer in simplest radical form.

User Asperi
by
5.5k points

2 Answers

0 votes

Answer


\boxed{5 √(2) \: \: \:units}

Step by step explanation

Let the points be A and B

A ( - 3 , - 4 ) ⇒( x₁ , y₁ )

B ( 4 , - 5 )⇒( x₂ , y₂ )

Now, let's find the distance between these points :

Distance =
\mathsf{ \sqrt{ {(x2 - x1)}^(2) + {(y2 - y1)}^(2) } }

Plug the values


\mathsf{ \sqrt{ {(4 - ( - 3))}^(2) + {( - 5 - ( - 4))}^(2) } }

Calculate


\mathsf{ \sqrt{ {(4 + 3)}^(2) + {( - 5 + 4)}^(2) } }


\mathsf{ \sqrt{ {(7)}^(2) + {( - 1)}^(2) } }

Evaluate the power


\mathsf{ √(49 + 1) }

Add the numbers


\mathsf{ √(50) }

Simplify the radical expression


\mathsf{5 √(2) \: \: units}

Hope I helped!

Best regards!!

User Challe
by
5.9k points
6 votes

Answer:

d=5√2 unit

Explanation:

distance between two points d=√(x2-x1)²+(y2-y1)²

two pints (-3,-4) and (4,-5)

d=√(4-(-3)²+(-5-(-4)²

d=√(4+3)²+(-5+4)²

d=√49+1

d=√50

d=√25*2

d=5√2

User Flamey
by
5.5k points