103k views
1 vote
As fast as you can find the answer​

As fast as you can find the answer​-example-1
User Ghadeer
by
5.9k points

1 Answer

3 votes

Answer:

Step-by-step explanation:

a) From the diagram, the load will be expressed in newton. The load will be the weight of the box on the inclined plane.

Load = mass * acceleration due to gravity.

Given the mass of the object = 100kg

acceleration due to gravity = 9.8m/s²

Load (in Newton) = 100*9.8

Load (in Newton) = 980N

b) The formula for calculating the velocity ratio of an inclined plane is expressed as VR = 1/sinθ where θ is the angle of inclination.

Given θ = 30°,

VR = 1/sin30°

VR = 1/0.5

VR = 1/(1/2)

VR = 1* 2/1

VR = 2

The velocity ratio is 2.

c) Length of the inclined plane can be calculated using the SOH, CAH, TOA trigonometry identity.

According to SOH, sinθ = opposite/hypotenuse

sin30° = 1/2 = opp/hyp

This shows that the opposite side of the triangle is 1 and the hypotenuse is 2. The length if the inclined is the length of the longest side i.e the hypotenuse. Hence the length of the inclined plane is 2m

d) Mechanical Advantage is the ratio of the load to the effort applied on an object.

Given the Load = 980N and the effort applied to the load on the incline plane = 400N

MA = Load/Effort

MA = 980/400

MA = 2.45

e) Efficiency = MA/VR * 100

Efficiency = 2.45/2 * 100

Efficiency = 122.5%

User Thomas Darvik
by
5.8k points