Answer:
or
![radius = 3.61](https://img.qammunity.org/2021/formulas/mathematics/high-school/itck6l22ob6jzzbgwhn9v4l2k2jg5eq489.png)
Explanation:
Given
Points:
A(-3,2) and B(-2,3)
Required
Determine the radius of the circle
First, we have to determine the center of the circle;
Since the circle has its center on the x axis; the coordinates of the center is;
![Center = (x,0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hzf5gsmgkz26svol24wppg0xjxhh8zlmg8.png)
Next is to determine the value of x through the formula of radius;
![radius = √((x_1 - x)^2 + (y_1 - y)^2) = √((x_2 - x)^2 + (y_2 - y)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kcozpjoiomg7kzokcwvg2qsycke2ps2nmm.png)
Considering the given points
![A(x_1,y_1) = A(-3,2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ekghys1awiuk1fs1u5e77c6cmam9uw0uvd.png)
![B(x_2,y_2) = B(-2,3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ti65c4oat1cilyyibevdkia5cbenve1491.png)
![Center(x,y) =Center (x,0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/df93ifnsuwp65i5of4hswdr5zqk89ckq59.png)
Substitute values for
in the above formula
We have:
![√((-3 - x)^2 + (2 - 0)^2) = √((-2 - x)^2 + (3 - 0)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/k5lxvchf4cb4tqapbdb1g40ul7nzfz0mld.png)
Evaluate the brackets
![√((-(3 + x))^2 + 2^2) = √((-(2 + x))^2 + 3 ^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/w2u6owlgq8cuxtgo445px3jgfai9i39dix.png)
![√((-(3 + x))^2 + 4) = √((-(2 + x))^2 + 9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qr0ejp7e42j50kww0h7d5j5a5pxplwdwvv.png)
Eva;uate all squares
![√((-(3 + x))(-(3 + x)) + 4) = √((-(2 + x))(-(2 + x)) + 9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/qvrfaa0i3emtgbaym8ohu3c79lu7eybedv.png)
![√((3 + x)(3 + x) + 4) = √((2 + x)(2 + x) + 9)](https://img.qammunity.org/2021/formulas/mathematics/high-school/kv7sa5kfhkd1itkm697xk2ds9siyzb2dy7.png)
Take square of both sides
Evaluate the brackets
![3(3 + x) +x(3 + x) + 4 = 2(2 + x) +x(2 + x) + 9](https://img.qammunity.org/2021/formulas/mathematics/high-school/n9t9y6sun5trbedcbuzjthbrw4tk7eeclm.png)
![9 + 3x +3x + x^2 + 4 = 4 + 2x +2x + x^2 + 9](https://img.qammunity.org/2021/formulas/mathematics/high-school/sov9e69n04r6nwatcavpi16pavr1jypx5b.png)
![9 + 6x + x^2 + 4 = 4 + 4x + x^2 + 9](https://img.qammunity.org/2021/formulas/mathematics/high-school/vej5cql6idfd89buulv4l7kwjztr37w3do.png)
Collect Like Terms
![6x -4x + x^2 -x^2 = 4 -4 + 9 - 9](https://img.qammunity.org/2021/formulas/mathematics/high-school/o0cslkehkg3rwbdp3nd740bu2c72guqm8u.png)
![2x = 0](https://img.qammunity.org/2021/formulas/mathematics/high-school/hauftqcz0l8v5zn2bm12i4igtvajh5fwuy.png)
Divide both sides by 2
![x = 0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1mbk3cbhqtj32pj5r7e4qkfku3nffv40fy.png)
This implies the the center of the circle is
![Center = (x,0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hzf5gsmgkz26svol24wppg0xjxhh8zlmg8.png)
Substitute 0 for x
![Center = (0,0)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jjnba287axq67ukdvsqxlpalwq5pocjc4c.png)
Substitute 0 for x and y in any of the radius formula
![radius = √((x_1 - 0)^2 + (y_1 - 0)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/jv9yofn5yn9s0t67ynpo8zbdfivyiwm5mo.png)
![radius = √((x_1)^2 + (y_1)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/s36fsobxyf6eu1lkph79d5ozdhg26d6sal.png)
Considering that we used x1 and y1;
In this case we have that;
![A(x_1,y_1) = A(-3,2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ekghys1awiuk1fs1u5e77c6cmam9uw0uvd.png)
Substitute -3 for x1 and 2 for y1
![radius = √((-3)^2 + (2)^2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/hnkul8o02pfcejclnev1phh2ljrmq2rvmc.png)
![radius = √(13)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zldd2ohw9quhb8l8k0uhued6dxyhai1nqq.png)
---Approximated