185k views
2 votes
A standardized​ exam's scores are normally distributed. In a recent​ year, the mean test score was and the standard deviation was . The test scores of four students selected at random are ​, ​, ​, and . Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

User Wgwz
by
8.5k points

1 Answer

2 votes

Answer:

The​ z-score for 1880 is 1.34.

The​ z-score for 1190 is -0.88.

The​ z-score for 2130 is 2.15.

The​ z-score for 1350 is -0.37.

And the z-score of 2130 is considered to be unusual.

Explanation:

The complete question is: A standardized​ exam's scores are normally distributed. In recent​ years, the mean test score was 1464 and the standard deviation was 310. The test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350. Find the​ z-scores that correspond to each value and determine whether any of the values are unusual. The​ z-score for 1880 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1190 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 2130 is nothing. ​(Round to two decimal places as​ needed.) The​ z-score for 1350 is nothing. ​(Round to two decimal places as​ needed.) Which​ values, if​ any, are​ unusual? Select the correct choice below​ and, if​ necessary, fill in the answer box within your choice. A. The unusual​ value(s) is/are nothing. ​(Use a comma to separate answers as​ needed.) B. None of the values are unusual.

We are given that the mean test score was 1464 and the standard deviation was 310.

Let X = standardized​ exam's scores

The z-score probability distribution for the normal distribution is given by;

Z =
(X-\mu)/(\sigma) ~ N(0,1)

where,
\mu = mean test score = 1464


\sigma = standard deviation = 310

S, X ~ Normal(
\mu=1464, \sigma^(2) = 310^(2))

Now, the test scores of four students selected at random are ​1880, 1190​, 2130​, and 1350.

So, the z-score of 1880 =
(X-\mu)/(\sigma)

=
(1880-1464)/(310) = 1.34

The z-score of 1190 =
(X-\mu)/(\sigma)

=
(1190-1464)/(310) = -0.88

The z-score of 2130 =
(X-\mu)/(\sigma)

=
(2130-1464)/(310) = 2.15

The z-score of 1350 =
(X-\mu)/(\sigma)

=
(1350-1464)/(310) = -0.37

Now, the values whose z-score is less than -1.96 or higher than 1.96 are considered to be unusual.

According to our z-scores, only the z-score of 2130 is considered to be unusual as all other z-scores lie within the range of -1.96 and 1.96.

User Arnab Bhagabati
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories