52.4k views
0 votes
Now considering the real world situation are there any restrictions or changes you need to make for your domain or range to fit the situation described above? If so adjust your graph to represent these changes. Considering the real situations above (Question D.)

Now considering the real world situation are there any restrictions or changes you-example-1

1 Answer

5 votes

Answer:

Ok, we have the function:

y = 2gb*x + 3gb

Where x is the number of streams that you did.

You know that for this function, in a math view, the domain and the range are the set of all real numbers.

(Actually the domain should be integers, but i guess that if you only stream a 0.3534 of a movie and then you quit it, here only consumed 0.3534*2gb, so we can allow x to be a real number)

But in a "real situation", there are some other restrictions:

Restrictions for x:

You can never have a negative value for x (because this has no sense)

So the first restriction is x ≥ 0.

Then, there should be a maximum value of x (you can not stream 4 million things in one month). Or A may be the number of streams that you can watch until you reach the monthly limit of Gbs.

Then the domain is:

0 ≤ x ≤ A.

Now, the minimum of the range is defined by the minimum in the domain:

When x = 0, we have:

y = 2*0 + 3gb

So the minimum value in the range is 3gb.

y ≥ 3gb

And then the maximum value of the range will be when x = A

y = 2Gb*A + 3Gb

3Gb ≤ y ≤ 2Gb*A + 3Gb

User Martin Winter
by
6.1k points